反思感悟用基底表示空间向量的解题策略1.空间中,任一向量都可以用一个基底表示,且只要基底确定,则表示形式是唯一的.2.用基底表示空间向量时,一般要结合图形,运用向量加法、减法的平行四边形法则、三角形法则,以及数乘向量的运算法则,逐步向基向量过渡,直至全部用基向量表示.3.在空间几何体中选择基底时,通常选取公共起点最集中的向量或关系最明确的向量作为基底,例如,在正方体、长方体、平行六面体、四面体中,一般选用从同一顶点出发的三条棱所对应的向量作为基底.例2.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是DD1,BD的中点,点G在棱CD上,且CG=1/3 CD(1)证明:EF⊥B1C;(2)求EF与C1G所成角的余弦值.思路分析选择一个空间基底,将(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)证明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?与(C_1 G) ?夹角的余弦值即可.(1)证明:设(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,则{i,j,k}构成空间的一个正交基底.
(2)l的倾斜角为90°,即l平行于y轴,所以m+1=2m,得m=1.延伸探究1 本例条件不变,试求直线l的倾斜角为锐角时实数m的取值范围.解:由题意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若将本例中的“N(2m,1)”改为“N(3m,2m)”,其他条件不变,结果如何?解:(1)由题意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由题意知m+1=3m,解得m=1/2.直线斜率的计算方法(1)判断两点的横坐标是否相等,若相等,则直线的斜率不存在.(2)若两点的横坐标不相等,则可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)进行计算.金题典例 光线从点A(2,1)射到y轴上的点Q,经y轴反射后过点B(4,3),试求点Q的坐标及入射光线的斜率.解:(方法1)设Q(0,y),则由题意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即点Q的坐标为 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)设Q(0,y),如图,点B(4,3)关于y轴的对称点为B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由题意得,A、Q、B'三点共线.从而入射光线的斜率为kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,点Q的坐标为(0,5/3).
导语在必修第一册中,我们研究了函数的单调性,并利用函数单调性等知识,定性的研究了一次函数、指数函数、对数函数增长速度的差异,知道“对数增长” 是越来越慢的,“指数爆炸” 比“直线上升” 快得多,进一步的能否精确定量的刻画变化速度的快慢呢,下面我们就来研究这个问题。新知探究问题1 高台跳水运动员的速度高台跳水运动中,运动员在运动过程中的重心相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系h(t)=-4.9t2+4.8t+11.如何描述用运动员从起跳到入水的过程中运动的快慢程度呢?直觉告诉我们,运动员从起跳到入水的过程中,在上升阶段运动的越来越慢,在下降阶段运动的越来越快,我们可以把整个运动时间段分成许多小段,用运动员在每段时间内的平均速度v ?近似的描述它的运动状态。
4.写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)一个袋中装有8个红球,3个白球,从中任取5个球,其中所含白球的个数为X.(2)一个袋中有5个同样大小的黑球,编号为1,2,3,4,5,从中任取3个球,取出的球的最大号码记为X.(3). 在本例(1)条件下,规定取出一个红球赢2元,而每取出一个白球输1元,以ξ表示赢得的钱数,结果如何?[解] (1)X可取0,1,2,3.X=0表示取5个球全是红球;X=1表示取1个白球,4个红球;X=2表示取2个白球,3个红球;X=3表示取3个白球,2个红球.(2)X可取3,4,5.X=3表示取出的球编号为1,2,3;X=4表示取出的球编号为1,2,4;1,3,4或2,3,4.X=5表示取出的球编号为1,2,5;1,3,5;1,4,5;2,3,5;2,4,5或3,4,5.(3) ξ=10表示取5个球全是红球;ξ=7表示取1个白球,4个红球;ξ=4表示取2个白球,3个红球;ξ=1表示取3个白球,2个红球.
温故知新 1.离散型随机变量的定义可能取值为有限个或可以一一列举的随机变量,我们称为离散型随机变量.通常用大写英文字母表示随机变量,例如X,Y,Z;用小写英文字母表示随机变量的取值,例如x,y,z.随机变量的特点: 试验之前可以判断其可能出现的所有值,在试验之前不可能确定取何值;可以用数字表示2、随机变量的分类①离散型随机变量:X的取值可一、一列出;②连续型随机变量:X可以取某个区间内的一切值随机变量将随机事件的结果数量化.3、古典概型:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等。二、探究新知探究1.抛掷一枚骰子,所得的点数X有哪些值?取每个值的概率是多少? 因为X取值范围是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示
1.确定研究对象,明确哪个是解释变量,哪个是响应变量;2.由经验确定非线性经验回归方程的模型;3.通过变换,将非线性经验回归模型转化为线性经验回归模型;4.按照公式计算经验回归方程中的参数,得到经验回归方程;5.消去新元,得到非线性经验回归方程;6.得出结果后分析残差图是否有异常 .跟踪训练1.一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了6组观测数据列于表中: 经计算得: 线性回归残差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分别为观测数据中的温度和产卵数,i=1,2,3,4,5,6.(1)若用线性回归模型拟合,求y关于x的回归方程 (精确到0.1);(2)若用非线性回归模型拟合,求得y关于x回归方程为 且相关指数R2=0.9522. ①试与(1)中的线性回归模型相比较,用R2说明哪种模型的拟合效果更好 ?②用拟合效果好的模型预测温度为35℃时该种药用昆虫的产卵数.(结果取整数).
中心城区面积从不足x平方公里,到如今突破xx.x平方公里;交通建设从没有一米高等级公路,到如今构建起“铁公机”立体网络;农民人均纯收入从不足xxx元,到xxxx年底农村居民人均可支配收入飙升至xxxxx元翻开xx建地xx年的壮美画卷,沧桑巨变的背后离不开人才的付出、离不开人才的奉献。xx年筚路蓝缕的奋斗史,就是一部集聚人才、依靠人才、成就人才的发展史。——这是人才总量大幅跃增的xx年。从xxxx年每万人拥有人才不足xx人,到xxxx年每万人拥有人才xxx人,再到xxxx年每万人拥有人才xxxx人,增长近xx倍。——这是人才质量飞速提升的xx年。截至xxxx年底,全市大学以上学历人才占比由不足x%提高至xx%、增长xx余倍,一大批优秀人才获国家级荣誉表彰。——这是人才生态显著改善的xx年。从人才专项经费几乎为零,到人才工作投入近亿元;从人才缺乏基本住居保障,到拎包入住式人才公寓突破xxxx套;从没有专门的人才服务机构,到市县(区)全覆盖成立人才服务中心近悦远来的人才生态不断优化。
两年来,全院共开展案件评查18次,发出监控预警925条。四、坚持文化润廉唱响清廉检察“主旋律”在文化润廉上,鼎城区人民检察院一手抓实阵地“硬”建设,一手打造特色“软”活动。该院立足现有检察文化基础设施,按照清廉机关建设的标准要求,深度融入清廉检察建设元素,充分发挥“检心·扛鼎”检察文化品牌效应,推动清廉标语上屏、清廉知识入册、清廉制度上墙,进一步优化了教育警示基地,拓展了清廉文化教育阵地;同时,他们定期举办以清廉为主题的清廉故事分享会、音乐思政课等形式多样的廉政教育活动,以古今中外的廉洁名人为例,组织检察干警讲述廉洁故事,畅谈自身感悟,进一步营造了干警学习廉洁文化、树牢廉洁意识的清廉氛围。如今,鼎城区人民检察院正以高度的政治自觉、法治自觉和检察自觉,全面落实从严治检各项要求,进一步推进清廉机关建设,力争取得更大实效,打造具有特色的品牌。奋力谱写市域社会治理现代化新篇章
随着科技的发展,我国进入“互联网”时代,网上信访成倍增加。在面对面接访群众的基础上,汉滨区还为群众提供了电话信访、网络信访等方便快捷的诉求渠道,并通过领导干部接访下访包案等方式解决信访诉求问题。今年以来,区委、区政府认真践行“浦江经验”工作模式,区级领导率先垂范、亲力亲为,深入开展领导干部下访、接访、化访的“三访”活动,持续推进“五个一”、专班调度、联动劝返、督察督办、律师参与化访等信访化解制度,确保群众反映的问题和诉求在规定的时限内得到妥善解决,让群众带着委屈怨气来,揣着舒心安心回。今年以来,区级领导共计接访下访化访164次、接待群众184件次,在接待中心坐班接待来访群众52次72件次、下访30次,接待化解信访问题30件次,镇(街道)科级干部接访82件次。为有效减少重复访、越级访,汉滨区各级信访部门坚持以创新工作思路、工作方法和工作机制为切入点,始终围绕接收受理、处置办理、回复反馈等环节,规范工作程序,明确职责权限、受理范围、办理时限等内容规范开展信访工作,用日趋完善的制度和机制画好为民服务的“同心圆”,为全区信访工作提供有力支持。
深入开展移风易俗弘扬新风活动。制定出台了《xx市“美丽乡村·文明家园”乡村文明行动实施方案》《xx市整治高价彩礼推动移风易俗实施方案》等,积极推动社会主义核心价值观融入村规民约,用刚性约束确立道德天平、推动移风易俗。深入开展学雷锋志愿服务活动,组建各类学雷锋志愿服务队xxx多支,招募注册志愿者xx.x万余名(占常住人口的xx%),有服务时长志愿者x.x万人。人人学雷锋,人人做雷锋,有困难找“雷锋”的氛围日益浓厚。开展社会主义核心价值观铸魂活动,做到核心价值观“人知人晓”“人信人守”“人行人遵”,xx县、xx区和有关部门单位以公园景区、公共场所、交通路网、企业、村镇、社区等为重点,新建社会主义核心价值观主题公园x个,建设核心价值观主题示范点xx处,让广大市民时时处处受到核心价值观、道德新风尚的熏陶。四、扣好人生第一粒扣子,让孩子的明天更美好
“咬定青山不放松”,用韧劲推进工作落实。到村工作要有一种决心和韧劲。无论面对什么工作,一定要捋清楚弄明白,无论遇到什么问题,一定能有解决办法。在一年多的摸索与尝试中,我逐步认识到,想要政策能够顺利实施,想要切实解决矛盾与问题,需要的不仅仅是讲一两句方言,更不是一个干部身份,需要的是能够站在村民的角度,将村民利益视为自己的利益,将村民的困难视为自己的困难,设身处地的思考,才能正确解读各项政策,找到工作方法并将政策落在实处。如改厕工作,一块小小的橡胶盖,保护着村民的安全,一条条排污渠道,连接的是群众与政府的信任。而在抗震加固工作中,一块小小的瓷砖,不仅要美观大方,更要“贴”在群众心上。当然群众总有这样的需求、那样的不满,这一度深深困扰着我,通过请教拜师领导,学会将主观上困难要多方协调,做到“甜嘴攻心”;客观上的困难与村民多沟通,做到“苦口婆心”。
三、担当筹备主责,无缝隙对接建设、营运我主动分担xx领导班子工程建设压力,牵头负责营运筹备工作。一是把握大局,制定筹备、并网等工作方案。成立领导及工作小组,倒排工作计划,有序推进各项工作顺利开展。二是综合协调,完成通车各类政策性文件审批。协调省交通厅、发改委、交通部路网中心及地方单位,完成收费站开通、费率核算、路政大队成立等xx余项工作审批。三是建章立制,保障通车收费平稳过渡。制定实施了收费管理办法、收费作业规程等xx部系列制度及预案,确保通车收费有章可循,有据可依。四是加强培训,提升新员工业务水平。组织开展xx名新员工入职培训,举办收费、监控等各类业务培训xx次,共xx人次。五是狠抓落实,有序推进筹备系列工作。每周召开工作推进会;深入现场,靠前指挥,督促各项工作落到实处。及时沟通房建、机电等部门,提出合理化建议xx多条,实现建设与运营无缝对接。
三、规划引领分类施策,集中发力打造样板一是深入抓好美丽乡村示范村创建工作。坚持规划引领、重点推进,围绕乡村道路硬化、基础设施建设、公共服务提升、绿化美化亮化、景观节点打造、三园建设和建筑整体风貌改造等主要工作,x紧紧依托生态资源定位,坚持集中连片打造,加快规划村庄风貌设计,通过建设生态廊道,高标准高质量建设和美乡村示范区。二是精准推进“一村一策”规划建设。坚持拆建结合,进一步明确工作目标,细化工作计划,积极探索合理用地模式,优化空间规划,盘活农村荒废土地,利用清理出的空地边坡广泛栽植果木,大力改造坑塘景观,建设观景步道,大力开展“三园建设”和村庄绿化美化亮化,集中优势打造优质精品村。通过深入挖掘本地历史文化资源和自然生态资源,全县各乡镇村因地制宜增强村庄设计感,赓续红色教育传统,丰满历史文化名人故事,重点打造一批廉政文化示范街、产业文化文明街。全县拟建游园广场x个,墙体美化x万平,改造坑塘景观x个,建设观景步道x米。三是扎实用好基础工程建设项目。
(分析:北京的商业中心分布和变化大致分三个阶段:钟鼓楼市场、三足鼎立格局形成、环路沿线商业中心出现。相对应的交通变化,钟鼓楼市场衰退与大运河运输地位衰落、运输方式的变化密切相关,后两个阶段与城市交通干线形态变化紧密联系)。〔承转〕商业中心的发展是随着交通的发展而变化的,集镇也是在交通要道上发展起来 的。(3)对集镇发展的影响〔举例说明〕陕西省勉县的长林镇,过去地处汉中经褒河去甘肃、四川的必经之路,来往客商众多,商业十分繁荣。后来由于改线,集镇逐渐衰落,至今连定期的集市贸易都没有了,完全退化为单纯的居民点。以及运河沿线城镇如山东等的兴衰,亦可说明交通线的改变对聚落的影响。〔总结〕交通线路的改变常会引起集镇的繁荣或衰落。
(2)修建通向西藏的铁路,要克服哪些自然障碍?①冻土的季节冻融作用使路基不稳固,也使修路技术难度大,成本高②生态脆弱,植被破坏后难以修复③高原缺氧,使施工困难④广布的荒漠,多山的地形都使建设难度加大(3)结合初中所学知识分析,未来穿行于青藏高原铁路运输线上的货车中主要运输的货物有哪些?以盐湖中矿物为原料的化工产品,有色金属及其加工产品,畜产品及外省运入的各种工业品等。【总结新课】交通运输网的基本要素包括:交通线(铁路、公路、航道、管道)和交通点(港口、车站、航空港);运输网有单一和综合运输网二种形式。分国家级、省级和大区级三个层次。交通运输网的点线布局受经济、社会、技术和自然等因素的影响。【课后作业】:完成高一地理第二册填图册 第五章第一节
本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习抛物线及其标准方程在经历了椭圆和双曲线的学习后再学习抛物线,是在学生原有认知的基础上从几何与代数两 个角度去认识抛物线.教材在抛物线的定义这个内容的安排上是:先从直观上认识抛物线,再从画法中提炼出抛物线的几何特征,由此抽象概括出抛物线的定义,最后是抛物线定义的简单应用.这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解.坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学生应重点掌握的基本数学方法 运动变化和对立统一的思想观点在这节知识中得到了突出体现,我们必须充分利用好这部分教材进行教学
∵在△EFP中,|EF|=2c,EF上的高为点P的纵坐标,∴S△EFP=4/3c2=12,∴c=3,即P点坐标为(5,4).由两点间的距离公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求双曲线的方程为x^2/5-y^2/4=1.5.求适合下列条件的双曲线的标准方程.(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8;(2)以椭圆x^2/8+y^2/5=1长轴的端点为焦点,且经过点(3,√10);(3)a=b,经过点(3,-1).解:(1)由双曲线的定义知,2a=8,所以a=4,又知焦点在x轴上,且c=5,所以b2=c2-a2=25-16=9,所以双曲线的标准方程为x^2/16-y^2/9=1.(2)由题意得,双曲线的焦点在x轴上,且c=2√2.设双曲线的标准方程为x^2/a^2 -y^2/b^2 =1(a>0,b>0),则有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求双曲线的标准方程为x^2/3-y^2/5=1.(3)当焦点在x轴上时,可设双曲线方程为x2-y2=a2,将点(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的双曲线的标准方程为x^2/8-y^2/8=1.当焦点在y轴上时,可设双曲线方程为y2-x2=a2,将点(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦点不可能在y轴上.综上,所求双曲线的标准方程为x^2/8-y^2/8=1.
二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
问题1. 用一个大写的英文字母或一个阿拉伯数字给教室里的一个座位编号,总共能编出多少种不同的号码?因为英文字母共有26个,阿拉伯数字共有10个,所以总共可以编出26+10=36种不同的号码.问题2.你能说说这个问题的特征吗?上述计数过程的基本环节是:(1)确定分类标准,根据问题条件分为字母号码和数字号码两类;(2)分别计算各类号码的个数;(3)各类号码的个数相加,得出所有号码的个数.你能举出一些生活中类似的例子吗?一般地,有如下分类加法计数原理:完成一件事,有两类办法. 在第1类办法中有m种不同的方法,在第2类方法中有n种不同的方法,则完成这件事共有:N= m+n种不同的方法.二、典例解析例1.在填写高考志愿时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,如表,
当A,C颜色相同时,先染P有4种方法,再染A,C有3种方法,然后染B有2种方法,最后染D也有2种方法.根据分步乘法计数原理知,共有4×3×2×2=48(种)方法;当A,C颜色不相同时,先染P有4种方法,再染A有3种方法,然后染C有2种方法,最后染B,D都有1种方法.根据分步乘法计数原理知,共有4×3×2×1×1=24(种)方法.综上,共有48+24=72(种)方法.故选B.答案:B5.某艺术小组有9人,每人至少会钢琴和小号中的一种乐器,其中7人会钢琴,3人会小号,从中选出会钢琴与会小号的各1人,有多少种不同的选法?解:由题意可知,在艺术小组9人中,有且仅有1人既会钢琴又会小号(把该人记为甲),只会钢琴的有6人,只会小号的有2人.把从中选出会钢琴与会小号各1人的方法分为两类.第1类,甲入选,另1人只需从其他8人中任选1人,故这类选法共8种;第2类,甲不入选,则会钢琴的只能从6个只会钢琴的人中选出,有6种不同的选法,会小号的也只能从只会小号的2人中选出,有2种不同的选法,所以这类选法共有6×2=12(种).因此共有8+12=20(种)不同的选法.
在线
客服