解析:由分式有意义的条件得3x-1≠0,解得x≠13.则分式无意义的条件是x=13,故选C.方法总结:分式无意义的条件是分母等于0.【类型三】 分式值为0的条件若使分式x2-1x+1的值为零,则x的值为()A.-1 B.1或-1C.1 D.1和-1解析:由题意得x2-1=0且x+1≠0,解得x=1,故选C.方法总结:分式的值为零的条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.三、板书设计1.分式的概念:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.2.分式AB有无意义的条件:当B≠0时,分式有意义;当B=0时,分式无意义.3.分式AB值为0的条件:当A=0,B≠0时,分式的值为0.本节采取的教学方法是引导学生独立思考、小组合作,完成对分式概念及意义的自主探索.提出问题让学生解决,问题由易到难,层层深入,既复习了旧知识又在类比过程中获得了解决新知识的途径.在这一环节提问应注意循序性,先易后难、由简到繁、层层递进,台阶式的提问使问题解决水到渠成.
把解集在数轴上表示出来,并将解集中的整数解写出来.解析:分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集,再找出解集范围内的整数即可.解:x+23<1 ①,2(1-x)≤5 ②,由①得x<1,由②得x≥-32,∴不等式组的解集为-32≤x<1.则不等式组的整数解为-1,0.方法总结:此题主要考查了一元一次不等式组的解法,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.三、板书设计一元一次不等式组概念解法不等式组的解集利用数轴确定解集利用口诀确定解集解一元一次不等式组是建立在解一元一次不等式的基础之上.解不等式组时,先解每一个不等式,再确定各个不等式组的解集的公共部分.
分式1x2-3x与2x2-9的最简公分母是________.解析:∵x2-3x=x(x-3),x2-9=(x+3)(x-3),∴最简公分母为x(x+3)(x-3).方法总结:最简公分母的确定:最简公分母的系数,取各个分母的系数的最小公倍数;字母及式子取各分母中所有字母和式子的最高次幂.“所有字母和式子的最高次幂”是指“凡出现的字母(或含字母的式子)为底数的幂的因式选取指数最大的”;当分母是多项式时,一般应先因式分解.【类型二】 分母是单项式分式的通分通分.(1)cbd,ac2b2;(2)b2a2c,2a3bc2;(3)45y2z,310xy2,5-2xz2.解析:先确定最简公分母,找到各个分母应当乘的单项式,分子也相应地乘以这个单项式.解:(1)最简公分母是2b2d,cbd=2bc2b2d,ac2b2=acd2b2d;(2)最简公分母是6a2bc2,b2a2c=3b2c6a2bc2,2a3bc2=4a36a2bc2;(3)最简公分母是10xy2z2,45y2z=8xz10xy2z2,310xy2=3z210xy2z2,5-2xz2=--25y210xy2z2.
解析:(1)先把第二个分式的分母y-x化为-(x-y),再把分子相加减,分母不变;(2)先把第二个分式的分母a-b化为-(b-a),再把分子相加减,分母不变.解:(1)原式=2x2-3y2x-y-x2-2y2x-y=2x2-3y2-(x2-2y2)x-y=x2-y2x-y=(x+y)(x-y)x-y=x+y;(2)原式=2a+3bb-a-2bb-a-3bb-a=2a+3b-2b-3bb-a=2a-2bb-a=-2(b-a)b-a=-2.方法总结:分式的分母互为相反数时,可以把其中一个分母放到带有负号的括号内,把分母化为完全相同.再根据同分母分式相加减的法则进行运算.三、板书设计1.同分母分式加减法法则:fg±hg=f±hg.2.分式的符号法则:fg=-f-g,-fg=f-g=-fg.本节课通过同分母分数的加减法类比得出同分母分式的加减法.易错点一是符号,二是结果的化简.在教学中,让学生参与课堂探究,进行自主归纳,并对易错点加强练习.从而让学生对知识的理解从感性认识上升到理性认识.
方法总结:已知解集求字母系数的值,通常是先解含有字母的不等式,再利用解集唯一性列方程求字母的值.解题过程体现了方程思想.三、板书设计1.一元一次不等式的概念2.解一元一次不等式的基本步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)两边都除以未知数的系数.本节课通过类比一元一次方程的解法得到一元一次不等式的解法,让学生感受到解一元一次不等式与解一元一次方程只是在两边都除以未知数的系数这一步时有所不同.如果这个系数是正数,不等号的方向不变;如果这个系数是负数,不等号的方向改变.这也是这节课学生容易出错的地方.教学时要大胆放手,不要怕学生出错,通过学生犯的错误引起学生注意,理解产生错误的原因,以便在以后的学习中避免出错.
【类型二】 根据不等式的变形确定字母的取值范围如果不等式(a+1)x<a+1可变形为x>1,那么a必须满足________.解析:根据不等式的基本性质可判断a+1为负数,即a+1<0,可得a<-1.方法总结:只有当不等式的两边都乘(或除以)一个负数时,不等号的方向才改变.三、板书设计1.不等式的基本性质性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变;性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变;性质3:不等式的两边都乘(或除以)同一个负数,不等号方向改变.2.把不等式化成“x>a”或“x<a”的形式“移项”依据:不等式的基本性质1;“将未知数系数化为1”的依据:不等式的基本性质2、3.本节课学习不等式的基本性质,在学习过程中,可与等式的基本性质进行类比,在运用性质进行变形时,要注意不等号的方向是否发生改变;课堂教学时,鼓励学生大胆质疑,通过练习中易出现的错误,引导学生归纳总结,提升学生的自主探究能力.
方法总结:解题的关键是由题意列出不等式求出这个少算的内角的取值范围.探究点二:多边形的外角和定理【类型一】 已知各相等外角的度数,求多边形的边数正多边形的一个外角等于36°,则该多边形是正()A.八边形 B.九边形C.十边形 D.十一边形解析:正多边形的边数为360°÷36°=10,则这个多边形是正十边形.故选C.方法总结:如果已知正多边形的一个外角,求边数可直接利用外角和除以这个角即可.【类型二】 多边形内角和与外角和的综合运用一个多边形的内角和与外角和的和为540°,则它是()A.五边形 B.四边形C.三角形 D.不能确定解析:设这个多边形的边数为n,则依题意可得(n-2)×180°+360°=540°,解得n=3,∴这个多边形是三角形.故选C.方法总结:熟练掌握多边形的内角和定理及外角和定理,解题的关键是由已知等量关系列出方程从而解决问题.
(2)研究正方形:通过前面这个环节,学生已经掌握了研究长方形特征的方法,很自然地拿出一个正方形,通过看、数、量、折、小组讨论、展示交流等活动归纳出正方形的特征:正方形四条边都相等,四个角都是直角,这也是本节课的重点内容,但并不是难点,可由中下学生来完成,给他们以展示技能的机会。通过一系列的探究活动,学生的学习积极性已被调动,思维正处于活跃阶段,此时我把学生带到本节课的难点环节(3)想一想,长方形和正方形有什么相同点和不同点?对于学生的思考结果,老师并不急于回答,而是引导学生从长方形和正方形边和角的共同点去进行研究分析,让学生充分经历思考学习的过程,最后才巧妙地借助多媒体,直观地帮学生理解正方形是一个特殊的长方形,在这里多媒体化静为动,化抽象为直观,较好地帮学生突破了难点。至此,学生已经掌握了长方形、正方形的有关知识,此时,他们急于找到一块用武之地,以展示自我,体验成功,于是我把学生带入到“应用新知,理解提高”的环节。
5. 作业: 作业我同样选取不同题型的五个计算题,目的是想查看学生学的效果如何,是否对哪类题型还留有疑问。 6. 自我评价: 这堂课我觉得满意的,是能够利用短暂的45分钟把要学的知识穿插在学与练当中,充分地利用了课堂有限的时间,并且能让学生边学边练,及时巩固。 当然这堂课也有很多不足之处,我觉得自己对于课堂上学生做练习时出现的一些小问题处理还没有能够处理得很好,我应该吸取经验教训,再以后的教学中加以改进。 另外对于多个有理数相乘时的符号问题,我觉得自己归纳得还不是很到位,我想解决的办法是在以后的练习中再做些补充,让学生加深理解。从中我也得到一个教训,再以后的教学工作中,我还应该多学习教学方法,多思考如何归纳知识点,才能更好地帮学生形成一个系统的知识系统!
在答案的汇总过程中,要肯定学生的探索,爱护学生的学习兴趣和探索欲.让学生作课堂的主人,陈述自己的结果.对学生的不完整或不准确回答,教师适当延迟评价;要鼓励学生创造性思维,教师要及时抓住学生智慧的火花的闪现,这一瞬间的心理激励,是培养学生创造力、充分挖掘潜能的有效途径.预先设想学生思路,可能从以下方面分类归纳,探索规律:① 从加数的不同符号情况(可遇见情况:正数+正数;负数+负数;正数+负数;数+0)② 从加数的不同数值情况(加数为整数;加数为小数)③ 从有理数加法法则的分类(同号两数相加;异号两数相加;同0相加)④ 从向量的迭加性方面(加数的绝对值相加;加数的绝对值相减)⑤ 从和的符号确定方面(同号两数相加符号的确定;异号两数相加符号的确定)教学中要避免课堂热热闹闹,却陷入数学教学的浅薄与贫乏.
(1)思考并回答:对比同一个动物园两张照片,你发现了什么?为什么会有这么大的变化呢?(2)提出数学问题。2.自主探究,合作交流。(1)学生独立计算。(2)四人小组内交流算法。(3)全班汇报。学生可能出现以下几种计算方法:口算数线在计数器上拨珠计算。尝试列竖式的方法计算。(小老师板书,讲解)4.小狮子先知道用竖式计算三位数加法时要注意哪些方面的问题,你愿意告诉它吗?5..师:今天我们学习的就是三位数加法的计算方法。(补充课题)6..趣味练习,评选动物园环保之家(板演)(三)联系实际,巩固应用这一环节设计了“帮森林医生啄木鸟找对错”,“比一比谁做得又对又快”两个环节,目的是为了对今天学习的连续进位的加法进行巩固练习。(四)全课总结,畅谈收获
第二题先让学生说说规律,有一些学生一开始找不到规律,我就提示孩子把第一个数字盖上再看,这样孩子就能很快找到规律了。说明有时候不是整体重复而是一部分,高年级学的循环小数就是这样。第3小题是4个数字重复,大部分学生可以迅速找出重复的规律。3、会场一共排了10个灯笼,请问大灯笼有几个?小灯笼有几个?如果有15个呢?10÷2=5(组)答:大灯笼有5个,小灯笼有5个。这里要说明为什么要除以2,因为是两个一组。15÷2=7(组)……1(个)7+1=8(个)答:大灯笼有8个,小灯笼有7个。这里让学生说说余的1表示什么意思?表示一组的第一个。四、小小设计师用这节课学习的“重复”的规律设计一副简单又漂亮的图案。学生独立设计,然后上台展示。五、总结:今天你学到了什么?这节课我就说到这里,请各位老师提出宝贵意见。谢谢!
第三个环节是:综合实践,学以致用由于我班的同学都在学校吃早餐,可食堂的工人师傅们并不知道同学们最喜欢吃什么样的早餐,所以有时侯做了同学们都不喜欢吃的饭菜时,就会剩下很多,造成很大的浪费。怎样来解决这个浪费的问题呢?由此引导学生说出可以利用刚才学到的统计知识统计出同学们最喜欢的早餐。2、教师给每小组发一张早餐统计图,让学生在喜欢的早餐上画三角符号,由小组组长将本组的统计结果贴在黑板上,然后集体填写全班学生喜欢的早餐统计图和统计表。看着这张统计图和统计表请学生说说你想对食堂的管理人员提点什么建议?希望他们怎么做?第四个环节是:学生回顾,教师小结小朋友们,学了这节课你们知道要比较东西的多少的时候,画什么图比较好啊?(统计图)那在画统计图时要注意些什么呀?(先把东西分一分,再摆一摆,摆的时候注意要把东西摆放整齐)
说明:此处进行的是一次尝试应用乘方运算来解决开头的问题,互相呼应,以体现整节课的完整性,把学生开始的兴趣再次引向高潮。趣味探索:一张薄薄的纸对折56次后有多厚?试验一下你能折这么厚吗?说明:这个探索实际上仍是对学生应用能力的一个检查,纸对折56次,用什么运算来计算比较方便,另外计算过程中可使用计算器,进一步加深对乘方意义的理解(五)作业P56页1、2说明:这两个习题是对课本上例题的简单重复和模仿,通过本节课的学习,多数学生应该可以较轻松地完成。总之,在整个教学设计中,我始终以学生为课堂主体,让他们积极参与到教学中来,不断从旧知识中获得新的认识,通过不断进行联系比较,让学生主动自觉地去思考、探索、总结直至发现结果、发现"方法",进而优化了整个教学。
我们知道圆是一个旋转对称图形,无论绕圆心旋转多少度,它都能与自身重合,对称中心即为其圆心.将图中的扇形AOB(阴影部分)绕点O逆时针旋转某个角度,画出旋转之后的图形,比较前后两个图形,你能发现什么?二、合作探究探究点:圆心角、弧、弦之间的关系【类型一】 利用圆心角、弧、弦之间的关系证明线段相等如图,M为⊙O上一点,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求证:MD=ME.解析:连接MO,根据等弧对等圆心角,则∠MOD=∠MOE,再由角平分线的性质,得出MD=ME.证明:连接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法总结:圆心角、弧、弦之间相等关系的定理可以用来证明线段相等.本题考查了等弧对等圆心角,以及角平分线的性质.
接着引导学生进一步思考截面可不可以是特殊的三角形:等腰三角形和等边三角形。教师用课件演示切截过程,展示切截位置的变化引起截面形状的变化,图形特殊化。使学生的思考经历由一般到特殊的过程。2.截面是其他形状学生先猜想正方体的截面还有可能是什么形状,再利用实验操作型课件对正方体进行无限次的切截,让学生在无限次切截的过程中体会截面产生和变化的整个过程,发现截面产生和变化的规律。学生从切截活动中发现猜想时没有想到的截面图形,体会到探索的乐趣。教师再引导学生归纳正方体截面边数的规律。学生的认知得到升华。接着引导学生归纳截面形状中的特殊四边形。二.圆柱体和圆锥体的截面学生先猜想圆柱体的截面可能是什么形状,教师利用实验操作型课件对圆柱体进行无限次的切截,学生观察截面形状。
(三)联系生活玩中强化活动二:制作方向板这样不仅可以区分方向板上的8个方向和生活中的8个方向,而且对于四个新方向一目了然。再利用它做一些实践活动的练习,从而体会到方向和位置一样,都是相对的。要找好中心点才能确定方向。进而考察学生对知识的理解能力和反应能力。活动三:把你的方向板和教室的方向保持一致,同桌或小组间进行你问我答的游戏活动。(四)联系生活拓展应用出示中国地图,先来找找首都北京在哪里?我们的家乡大致在北京的()方向,实际是以北京为中心,我们可以在那画一个方向标,从而使问题一目了然。再找吉林、辽宁、四川分别在北京的()方向。(五)师生整理体验收获在这一环节中,主要让学生谈两点:1.谈收获,让学生说一说这节课学会了什么。
二、说学生通过前面的学习,学生已经认识了长度单位:米、分米、厘米、毫米,以及它们之间的进率,多数学生能联系生活实际,合理运用长度单位。但“千米”这个长度单位比较抽象,学生学习起来有些困难。为了激发学生的学习兴趣,可以把学生带到学校的操场上进行教学,让学生实地拉一拉、走一走、想一想等活动,充分感知“千米”这一长度单位到底有多长;对于学困生,以和他们玩游戏的方式来引导他们感知1千米的具体长度,从多角度来激发他们的参与,给予他们激励性的评价语言,并让他们积极汇报自己的亲身体会,达到全员参与,共同提高的原则。三、说教学目标新课程标准在空间与图形中明确提出:在教学中,应注重所学知识与日常生活的密切联系:应注重使学生在观察、操作等活动中,获得直观经验。结合我对教材的理解和本班学生的实际情况,我拟订了以下教学目标:
教学重点:体验1分时间的长短,建立一分钟的概念。教学难点:估计一分钟有多长学情分析本班学生对时分的知识在一年级已经有了一个初步的认识。能区分时针、分针和秒针;能初步认识钟面上的整点、半点;但是整点刚过和接近整点学生区分还有困难。二、说学生本节课的教学对象是二年级的学生,他们生活经验少,但思维比较活跃,他们还是以无意注意为主,而无意注意是由刺激物的特点引起的,在教学时,尽可能创设生动的数学活动,密切数学与生活的联系,使知识变成学生的切身需要,使他们在玩中学,在动中求知,通过操作交流去探索创新。三、说教学法在教材的处理上,我联系生活实际,用灵活多变的活动激发学生的学习情感,充分放手让学生大量开展多种形式有趣的实践活动,开放的情境,引导学生体验。使学生较好的认识一分并且对于一分能干什么也会有深刻的认识。
(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.
在线
客服