当前位置:首页 > Word文档 > 教育教学 > 课件教案> 北师大初中七年级数学下册三角形的三边关系教案

北师大初中七年级数学下册三角形的三边关系教案

  • 页数:3页
  • 字数:约 1511 字
  • 大小:2M
  • 格式:.doc
  • 版本:Office2016及以上版本
  • 作者:Tovelo_PPTer
  • 三角形的三边关系教案

    1.掌握三角形按边分类方法,能够判定三角形是否为特殊的三角形;

    2.探索并掌握三角形三边之间的关系,能够运用三角形的三边关系解决问题.(难点)

    一、情境导入

    数学来源于生活,生活中处处有数学.观察下面的图片,你发现了什么?

    问:你能不能给三角形下一个完整的定义?


    二、合作探究

    探究点一:三角形按边分类

    下列关于三角形按边分类的集合中,正确的是()

    解析:

    故选D.

    方法总结:三角形按边分类,分成不等边三角形与等腰三角形,知道等边三角形是特殊的等腰三角形是解本题的关键.

    探究点二:三角形中三边之间的关系

    【类型一】判定三条线段能否组成三角形

    以下列各组线段为边,能组成三角形的是()

    A.2cm,3cm,5cm B.5cm,6cm,10cm

    C.1cm,1cm,3cm D.3cm,4cm,9cm

    解析:选项A中2+3=5,不能组成三角形,故此选项错误;选项B中5+6>10,能组成三角形,故此选项正确;选项C中1+1<3,不能组成三角形,故此选项错误;选项D中3+4<9,不能组成三角形,故此选项错误.故选B.

    方法总结:判定三条线段能否组成三角形,只要判定两条较短的线段长度之和大于第三条线段的长度即可.

    【类型二】判断三角形边的取值范围

    一个三角形的三边长分别为4,7,x,那么x的取值范围是()

    A.3<x<11 B.4<x<7

    C.-3<x<11 D.x>3

    解析:∵三角形的三边长分别为4,7,x,∴7-4<x<7+4,即3<x<11.故选A.

    方法总结:判断三角形边的取值范围要同时运用两边之和大于第三边,两边之差小于第三边.

    【类型三】三角形三边关系与绝对值的综合

    若a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|.

    解析:根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负,然后去绝对值符号进行计算即可.

    解:根据三角形的三边关系,两边之和大于第三边,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.

    方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进行化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进行化简.

    三、板书设计

    1.三角形按边分类:

    有两边相等的三角形叫做等腰三角形,三边都相等的三角形是等边三角形,三边互不相等的三角形是不等边三角形.


您可能喜欢的文档

查看更多

热门课件教案

今日更新

在线
客服

相关
文档