(2)∵点G是BC的中点,BC=12,∴BG=CG=12BC=6.∵四边形AGCD是平行四边形,DC=10,AG=DC=10,在Rt△ABG中,根据勾股定理得AB=8,∴四边形AGCD的面积为6×8=48.方法总结:本题考查了平行四边形的判定和性质,勾股定理,平行四边形的面积,掌握定理是解题的关键.三、板书设计1.平行四边形的判定定理3:对角线互相平分的四边形是平行四边形;2.平行线的距离;如果两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离都相等,这个距离称为平行线之间的距离.3.平行四边形判定和性质的综合.本节课的教学主要通过分组讨论、操作探究以及合作交流等方式来进行,在探究两条平行线间的距离时,要让学生进行合作交流.在解决有关平行四边形的问题时,要根据其判定和性质综合考虑,培养学生的逻辑思维能力.
解:四边形ABCD是平行四边形.证明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形.方法总结:此题主要考查了平行四边形的判定,以及三角形全等的判定与性质,解题的关键是根据条件证出△AFD≌△CEB.三、板书设计1.平行四边形的判定定理(1)两组对边分别相等的四边形是平行四边形.2.平行四边形的判定定理(2)一组对边平行且相等的四边形是平行四边形.在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨.判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手.在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上.
解析:根据平行四边形的对角线互相平分得OA=OC,OB=OD,利用中点得出OE=OF,从而利用三角形全等得出BE=DF,∠FDB=∠EBD,得出BE∥DF.解:由题意得BE=DF,BE∥DF.理由如下:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵E,F分别是OA,OC的中点,∴OE=OF.在△OEB和△OFD中OE=OF,OB=OD,∠EOB=∠FOD,∴△OEB≌△OFD,∴BE=DF,∠EBD=∠BDF,∴BE∥DF.方法总结:在解决平行四边形的问题,如果有对角线的条件时,则首选对角线互相平分的方法解决问题.三、板书设计平行四边形对角线的性质:平行四边形对角线相互平分.通过分组讨论学习和学生自己动手操作和归纳,加强了学生在教学过程中的实践活动,也使学生之间的合作意识更强,与同学交流学习心得的气氛更浓厚,从而加深了同学之间的友谊和师生之间的教学和谐,使得教学过程更加流畅,促进教学相长.
1.从在教材中的地位与作用来看《平行四边形的判别》紧接《平行四边形的性质》一节。是在学生掌握了平行线、三角形及简单图形的平移和旋转等平面几何后知识的继续,又是后面学习菱形、矩形及正方形等知识的基础,起着承前启后的作用。2.从教材编写角度看教材从学生年龄及文化知识的实际水平出发,先让学生动手做,动脑思考→然后与同伴交流、探索、总结归纳→升华得出平行四边形的判别方法→再用这些方法去判定平行四边形。这样的安排使抽象的定理让学生更易于接受,并能在整个教学过程中真正享受到探索的乐趣。 3.基于对教材的分析,我认为本节课的教学重点:平行四边形的判别方法,教学难点:判别方法的灵活运用。4.教学目标:根据新课程标准的要求及学生的实际情况,本节课我制定了本节的三维教学目标:(1)知识目标: ①经历并了解平行四边形判别方法的探索过程;
注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生认识清楚)设计意图:通过观察图片和回顾以前的知识,使学生由感性认识上升到理性认识。通过描述平行四边形的特点和定义,也培养了学生的语言表达能力。同时也渗透了一些由实际问题转化为数学问题的“转化”的数学思想。(三)、引导实验探索新知【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.动手操作并思考:让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?
(2)DF∥BE.∵DE平分∠ADC,BF平分∠ABC(已知),∴∠3=12∠ADC,∠2=12∠ABC(角平分线定义).∵∠ADC=∠ABC(已知),∴∠2=∠3(等量代换).又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴DF∥BE(内错角相等,两直线平行).(3)AD∥BC.由(2)知∠3=∠1,又∵DE平分∠ADC(已知),∴∠ADE=∠3(角平分线定义),∠ADE=∠1(等量代换).∴∠A=180°-∠ADE-∠1=180°-2∠ADE=180°-∠ADC=180°-∠ABC(三角形内角和为180°及等量代换),即∠A+∠ABC=180°,∴AD∥BC(同旁内角互补,两直线平行).方法总结:解此类题应首先结合图形猜测结论,然后证明.证明两条直线平行,一般先找它们的截线,再求同位角相等(或内错角相等,同旁内角互补)来说明两直线平行.若没有公共截线,则需作出两直线的截线辅助证明.三、板书设计平行线,的判定)判定公理:同位角相等,两直线平行判定定理内错角相等,两直线平行同旁内角互补,两直线平行本节课通过经历探索平行线的判定方法的过程,发展学生的逻辑推理能力,逐步掌握规范的推理论证格式.
③ 注意:证明语言的规范化.推理过程要有依据.活动目的:通过对平行线的判定定理的归纳,使学生的认识有进一步的升华,再一次体会证明格式的严谨,体会到数学的严密性.教学效果:学生充分认识到证明步骤的严密性,对平行线判定的三个定理有了更进一步的认识.课后作业:课本第232页习题6.4第1,2,3题思考题:课本第233页习题6.4第4题(给学有余力的同学做)教学反思平行线是众多平面图形与空间图形的基本构成要素之一,它主要借助角来研究两条直线之间的位置关系,即通过两条直线与第三条直线相交所成的角来判定两条直线平行与否,在教学中,要紧紧围绕这些角(同位角、内错角、同旁内角)与平行线之间的关系展开。
解析:平行线中的拐点问题,通常需过拐点作平行线.解:(1)∠AED=∠BAE+∠CDE.理由如下:过点E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD=∠BAF+∠CDF.∵∠BAF=2∠EAF,∠CDF=2∠EDF,∴∠BAE+∠CDE=32∠BAF+32∠CDF,∴∠AED=32∠AFD.方法总结:无论平行线中的何种问题,都可转化到基本模型中去解决,把复杂的问题分解到简单模型中,问题便迎刃而解.三、板书设计平行线的性质:性质1:两条平行线被第三条直线所截,同位角相等;性质2:两条平行线被第三条直线所截,内错角相等;性质3:两条平行线被第三条直线所截,同旁内角互补.平行线的性质是几何证明的基础,教学中注意基本的推理格式的书写,培养学生的逻辑思维能力,鼓励学生勇于尝试.在课堂上,力求体现学生的主体地位,把课堂交给学生,让学生在动口、动手、动脑中学数学
为了验证前面的猜测是否正确。学生动手操作自主探究,合作交流中感悟,探索平行四边形的面积计算方法,在这个过程中,潜移默化地将等积转化的思想渗透开来。通过转化,在旧知基础上生长,而完成知识的自我构建与生成,突破了本课的教学难点。通过这样的教学让学生经历知识形成的过程,不仅使学生的动手能力得到提高,而且加深了学生对所学知识的理解。4、实践运用,深化认识数学是为生活服务的,在推导出平行四边形的面积公式之后,为了了解学生的掌握程度,检验他们能否学以致用,通过练习,使学生加深对公式的理解与应用达到熟练灵活掌握的目的,实现了学习数学的价值。让学生在运用知识解决问题的过程中,增强数学的应用意识,提高解决问题的能力。我设计下面的分层随堂练习:(1)基本练习,检测学生直接运用公式进行计算的情况,并适时进行品德教育。(2)深化练习,深化对推导原理的理解,加深学生对公式特征的认识。(3)开放练习,培养学生解决问题的能力。
问题1:你能证明“两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行”这个命题的正确性吗?已知:如图,∠1和∠2是直线a,b被直线c截出的内错角,且∠1=∠2.求证:a∥b. 问题2:你能证明“两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行”这个命题的正确性吗?已知:如图,∠1和∠2是直线a、b被直线c截出的同旁内角,且∠1与∠2互补.求证:a∥b
3、师:不相交的两条直线画长一些会怎样?量一量两条相交直线做组成的角分别是多少度?4、由小组同学在原记录单上动手合作操作,并进行讨论、汇报。5、师生共同总结:不相交的两条直线画长一些仍不相交,这两条直线叫平行线,也可以说它们相互平行;相交的两条直线形成的四个角,如果都是90度,就说这两条直线相互垂直,其中一条叫另外一条的垂线,这两条直线的焦点叫做垂足。6、生齐读P65平行和垂直概念,并画下来。7、今天我们就要一起来认识认识平行与垂直。(揭示课题)三、解释应用,巩固新知1、我们天天都在和垂线与平行线打交道:书本面相邻的两边是互相垂直的,相对的两边是互相平行的。2、P64主题图,找一找,图上有哪些平行和垂直的现象?3、做一做1找一找、想一想还有哪些物体的边是互相垂直的,哪些物体的边是互相平行的?
一、游戏导入,激发兴趣。 师:同学们,喜欢玩游戏吗?好,我们来玩一个“猜图形”的游戏,谁想来? 面向全体:请同学们提供准确的信息。 面向猜者:请你根据大家的描述来猜是什么图形,好吗?准备好了吗?开始! 教师逐个板贴长方形、正方形、平行四边形和梯形,学生逐个提供信息逐个猜,在此过程中教师注意即时评价学生或纠正学生的错误。 师:长方形和正方形我们已经很熟悉了,所以大家的描述既准确又充分,(拿下长方形和正方形)而描述平行四边形和梯形的时候,有些同学的描述就不够准确了。本节课我们就来进一步认识它们。(板书课题:平行四边形和梯形)
1、互逆命题:在两个命题中,如果第一个命题的条件是第二个命题的 ,而第一个命题的结论是第二个命题的 ,那么这两个命题互逆命题,如果把其中一个命题叫做原命题,那么另一个命题叫做它的 .2、互逆定理:如果一个定理的逆命题也是 ,那么这个逆命题就是原来定理的逆定理.注意(1):逆命题、互逆命题不一定是真命题,但逆定理、互逆定理,一定是真命题.(2):不是所有的定理都有逆定理.自主学习诊断:如图所示:(1)若∠A= ,则AC∥ED,( ).(2)若∠EDB= ,则AC∥ED,( ).(3)若∠A+ =1800,则AB∥FD,( ).(4)若∠A+ =1800,则AC∥ED,( ).
[设计意图:通过分组练习,既培养了学生动手操作能力,又提高了学生间的合作探究水平,在知识上还加深了对平行四边形和梯形特征的认识,可谓是“一石三鸟”。]3、课件出示:剪一剪,P733[设计意图:教会学生在活动中运用新知拓展思维,加深认识,增强了学生的参与意识和主体意识,渗透平行四边形和梯形的图形分割和图形拼组的知识,充分体现了“玩中学,学中玩”的新课程理念。](五)总结反思,评价体验。1、小结全课:谈谈你的收获及感想。2、集体评价:学生自评、互评自己在本课中的表现。3、教师评价。学生课堂学习情况,有代表性的行为表现等。[设计意图:通过总结评价,帮助学生梳理知识脉络,反思自己的学习过程,领会学习方法,获得数学学习经验。]
接着教学平行四边形的底和高,这两个概念都非常重要,是今后学习平行四边形面积计算的基础。此环节师生共同操作,突破难点。让学生用手中的平行四边形纸片跟着老师一起操作,师边做边讲折法。然后展开所得折痕就是平行四边形的高。说明与高垂直的边就是底。再请学生用笔和三角板画出高并标上。用同样的方法折几条高,观察高有什么特点。然后师生共同小结板书出高与底的定义和特点。即平行四边形的高的画法,就是相当于过直线外一点画已知直线的垂线。并说明从一条边上的任意一点都可以向它的对边画高,但通常是从一个顶点向它的对边画高。在这个环节中,既体现了教师的导和学生的学,又培养了学生动手、动脑能力。使难点更好的得到了突破。以上是本节课的基本教学思路,通过多种动手活动,使学生逐步形成空间观念和逻辑观念。
【说学情】新课程沐浴下成长的五年级学生,在灵活开放的课堂中,学生们善于独立思考,乐于合作交流,课上表现极为活跃,语言表达能力较强,十分愿意发表独立见解,有较好的学习数学的能力。本课学生对数格子法、剪割拼补法有了一定的了解,但是,让学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系是一个难点,需要学生在探索活动中,循序渐进、由浅入深地进行操作与观察,从而使学生进一步理解平面图形之间的变换关系,发展空间观念 【说教学目标】 根据上述的教材分析及当前新课标要求,我确定了以下教学目标: 1、知识与技能:使学生在理解掌握平行四边形面积的计算公式,能正确计算平行四边形面积。 2、过程与方法:通过对图形的观察、比较和动手操作,发展学生的空间观念,渗透转化和平移的思想。 3、情感态度价值观:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系。
一、说教材1、教学内容:“平行四边形的面积”是本册书第五单元“多边形的面积的计算”第一小节的内容。前面学过了长方形和正方形的面积计算,平行四边形和三角形的特征及底和高的概念,几何图形的认识贯穿在整个小学数学教学中,并且是按照从易到难的顺序呈现的。所以,要使学生理解掌握好平行四边形面积公式,必须以长方形的面积和平行四边形的底和高为基础,而且这部分知识的学习运用会为学生学习后面的三角形、梯形等平面图形的面积奠定良好的基础。2、学生分析:学生已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。
方法总结:平行线与角的大小关系、直线的位置关系是紧密联系在一起的.由两直线平行的位置关系得到两个相关角的数量关系,从而得到相应角的度数.探究点四:平行于同一条直线的两直线平行如图所示,AB∥CD.求证:∠B+∠BED+∠D=360°.解析:证明本题的关键是如何使平行线与要证的角发生联系,显然需作出辅助线,沟通已知和结论.已知AB∥CD,但没有一条直线既与AB相交,又与CD相交,所以需要作辅助线构造同位角、内错角或同旁内角,但是又要保证原有条件和结论的完整性,所以需要过点E作AB的平行线.证明:如图所示,过点E作EF∥AB,则有∠B+∠BEF=180°(两直线平行,同旁内角互补).又∵AB∥CD(已知),∴EF∥CD(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),∴∠FED+∠D=180°(两直线平行,同旁内角互补).∴∠B+∠BEF+∠FED+∠D=180°+180°(等式的性质),即∠B+∠BED+∠D=360°.方法总结:过一点作一条直线或线段的平行线是我们常作的辅助线.
应让学生积极讨论,说出平行线的判定及性质,由角的关系得到两条直线平行的结论是平行线的判定,反过来,由已知直线平行,得到角相等或互补的结论是平行线的性质,能通过具体实例,使学生在有充足的感性认识的基础上上升到理性认识,总结出平行线性质与判定的不同,总结证明的一般步骤,养成严谨的推理习惯.课后练习:课本的习题6.4第1,2,3题教学反思语言是思维的工具,要学好证明,必须学会语言的表达和运用,初学几何证明题时,学生对于几何语言不甚清楚,几何语言分为文字语言、符号语言和图形语言,老师有必要强调:将图形语言和符号语言相结合是学好证明的基本功,画图时按要求将符合题意的图形画出来。但要注意以下几点:(1)注意所画图形的多种情况;(2)能根据题意画出简单的图形,掌握“题”与“图”的对应关系,一般图形不要画成特殊图形,否则就意味着人为增加了已知条件,反之,特殊图形也不要画成一般图形,这两种做法都没有真实的表达题意;(3)图形力求准确,便于观察,有利于解题。
(1)两直线平行,同旁内角互补;(2)垂直于同一条直线的两直线平行;(3)相等的角是内错角;(4)有一个角是60°的三角形是等边三角形.解析:分别找出各命题的题设和结论将其互换即可.解:(1)同旁内角互补,两直线平行.真命题;(2)如果两条直线平行,那么这两条直线垂直于同一条直线(在同一平面内).真命题;(3)内错角相等.假命题;(4)等边三角形有一个角是60°.真命题.方法总结:一个定理不一定有逆定理,只有当它的逆命题为真命题时,它才有逆定理.三、板书设计1.直角三角形的性质与判定直角三角的两个锐角互余;有两个角互余的三角形是直角三角形.2.勾股定理及勾股定理的逆定理直角三角形两条直角边的平方和等于斜边的平方;如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.本节课充分发挥了学生动手操作能力、分类讨论能力、交流能力和空间想象能力,让学生充分体验到了数学思考的魅力和知识创新的乐趣,突显教学过程中的师生互动,使学生真正成为主动学习者.
在线
客服