北师大初中八年级数学下册等腰三角形的判定与反证法教案
-
- 页数:3页
- 字数:约 2498 字
- 大小:1M
- 格式:.doc
- 版本:Office2016及以上版本
- 作者:曼达林演示
等腰三角形的判定与反证法教案
1.掌握等腰三角形的判定定理并学会运用;(重点)
2.理解并掌握反证法的思想,能够运用反证法进行证明.
一、情境导入
某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(A点)为目标,然后在这棵树的正南方南岸B点插一小旗作标志,沿南偏东60度方向走一段距离到C处时,测得∠ACB为30度,这时,地质专家测得BC的长度是50米,就可知河流宽度是50米.
同学们,你们想知道这样估测河流宽度的根据是什么吗?他是怎么知道BC的长度是等于河流宽度的呢?今天我们就要学习等腰三角形的判定.
二、合作探究
探究点一:等腰三角形的判定(等角对等边)
【类型一】确定等腰三角形的个数
如图,在△ABC中,AB=AC,∠A=36,BD、CE分别是∠ABC、∠BCD的角平分线,则图中的等腰三角形有()
A.5个 B.4个
C.3个 D.2个
解析:共有5个.(1)∵AB=AC,∴△ABC是等腰三角形;(2)∵BD、CE分别是∠ABC、∠BCD的角平分线,∴∠EBC=∠ABC,∠ECB=∠BCD.∵△ABC是等腰三角形,∴∠EBC=∠ECB,∴△BCE是等腰三角形;(3)∵∠A=36,AB=AC,∴∠ABC=∠ACB=(180-36)=72.又∵BD是∠ABC的角平分线,∴∠ABD=∠ABC=36=∠A,∴△ABD是等腰三角形;同理可证△CDE和△BCD也是等腰三角形.故选A.
方法总结:确定等腰三角形的个数要先找出相等的边和相等的角,然后确定等腰三角形,再按顺序不重不漏地数出等腰三角形的个数.
【类型二】判定一个三角形是等腰三角形
如图,在△ABC中,∠ACB=90,CD是AB边上的高,AE是∠BAC的角平分线,AE与CD交于点F,求证:△CEF是等腰三角形.
解析:根据直角三角形两锐角互余求得∠ABE=∠ACD,然后根据三角形外角的性质求得∠CEF=∠CFE,根据等角对等边求得CE=CF,从而求得△CEF是等腰三角形.
解:∵在△ABC中,∠ACB=90,∴∠B+∠BAC=90.∵CD是AB边上的高,∴∠ACD+∠BAC=90,∴∠B=∠ACD.∵AE是∠BAC的角平分线,∴∠BAE=∠EAC,∴∠B+∠BAE=∠AEC,∠ACD+∠EAC=∠CFE,即∠CEF=∠CFE,∴CE=CF,∴△CEF是等腰三角形.
方法总结:“等角对等边”是判定等腰三角形的重要依据,是先有角相等再有边相等,只限于在同一个三角形中,若在两个不同的三角形中,此结论不一定成立.
【类型三】等腰三角形性质和判定的综合运用
如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.
(1)求证:△DEF是等腰三角形;
(2)当∠A=50时,求∠DEF的度数.
解析:(1)根据等边对等角可得∠B=∠C,利用“边角边”证明△BDE和△CEF全等,根据全等三角形对应边相等可得DE=EF,再根据等腰三角形的定义证明即可;(2)根据全等三角形对应角相等可得∠BDE=∠CEF,然后求出∠BED+∠CEF=∠BED+∠BDE,再利用三角形的内角和定理和平角的定义求出∠B=∠DEF.
(1)证明:∵AB=AC,∴∠B=∠C.在△BDE和△CEF中,∵∴△BDE≌△CEF(SAS),∴DE=EF,∴△DEF是等腰三角形;
(2)解:∵△BDE≌△CEF,∴∠BDE=∠CEF,∴∠BED+∠CEF=∠BED+∠BDE.∵∠B+∠BDE=∠DEF+∠CEF,∴∠B=∠DEF.∵∠A=50,AB=AC,∴∠B=(180-50)=65,∴∠DEF=65.
方法总结:等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.
探究点二:反证法
【类型一】假设
用反证法证明命题“三角形中必有一个内角小于或等于60”时,首先应假设这个三角形中()
A.有一个内角大于60
B.有一个内角小于60
C.每一个内角都大于60
D.每一个内角都小于60
解析:用反证法证明命题时,应先假设结论不成立,所以可先假设三角形中每一个内角都不小于或等于60,即都大于60.故选C.
方法总结:在假设结论不成立时,要注意考虑结论的反面所有可能的情况,必须把它全部否定.
【类型二】用反证法证明一个命题
求证:△ABC中不能有两个钝角.
解析:用反证法证明,假设△ABC中能有两个钝角,得出的结论与三角形的内角和定理相矛盾,所以原命题正确.
证明:假设△ABC中能有两个钝角,即∠A<90,∠B>90,∠C>90,
您可能喜欢的文档
查看更多北师大初中八年级数学下册三角形的全等和等腰三角形的性质教案
- 页数:4页
- |大小:1M
北师大初中七年级数学下册等腰三角形的性质教案
- 页数:3页
- |大小:1M
北师大初中八年级数学下册直角三角形的性质与判定教案
- 页数:5页
- |大小:1M
北师大初中八年级数学下册直角三角形全等的判定教案
- 页数:3页
- |大小:1M
北师大初中七年级数学下册利用“角边角”“角角边”判定三角形全等教案
- 页数:3页
- |大小:1M
北师大初中七年级数学下册利用“边角边”判定三角形全等教案
- 页数:4页
- |大小:1M
北师大初中七年级数学下册利用“边边边”判定三角形全等教案
- 页数:3页
- |大小:1M
热门课件教案
交通运输局在巡回指导组主题教育阶段性工作总结推进会上的汇报发言
- 页数:4页
- |大小:33.41KB
- 课件教案
XX区民政局党支部开展主题教育工作情况总结报告
- 页数:3页
- |大小:24.47KB
- 课件教案
县综合行政执法局2023年工作总结和2024年工作计划
- 页数:8页
- |大小:28.37KB
- 课件教案
XX区文旅体局2023年工作总结 及2024年工作安排
- 页数:8页
- |大小:32.41KB
- 课件教案
公司2024第一季度意识形态工作联席会议总结
- 页数:6页
- |大小:141.67KB
- 课件教案
2023年区实施乡村振兴战略工作总结
- 页数:6页
- |大小:27.90KB
- 课件教案
今日更新
5月份主题教育工作情况总结汇报
- 页数:3页
- |大小:136.87KB
××县招商局2024年上半年工作总结
- 页数:12页
- |大小:142.54KB
×××公安局机关党委上半年党建工作总结
- 页数:7页
- |大小:186.25KB
《2019—2024年全国党政领导班子建设规划纲要》实施情况的工作总结3800字
- 页数:6页
- |大小:29.16KB
“转观念、勇担当、新征程、创一流”主题教育活动阶段性工作总结
- 页数:3页
- |大小:22.76KB
“四零”承诺服务创建工作总结
- 页数:5页
- |大小:39.83KB