2、提出问题:3张大饼怎样能够平均分给唐僧师徒四人呢?每人得到大饼的多少张呢?3、揭示课题:分饼二、动手操作,探究新知:活动操作一:3张饼平均分给4个人。1、要求学生用准备好的圆纸片代表饼,剪一剪,拼一拼,画一画,小组交流自己的想法。教师巡视并进行指导。2、各小组汇报分法及分得的结果。(指名回答)第一种分法:把一张一张的饼平均分成4份,每人分每张饼的,共分一张饼的。并请学生上台演示分的整个过程。第二种分法:把3张饼叠起来,平均分成4份,每人分得3张饼的,也是张饼,请学生上台演示分的整个过程。3、演示学生两种分法的图片:4、请观察,这个分数有什么特点,分子比分母小,你还能举几个这样的例子吗?像这样的分数叫作真分数,真分数小于1。
课程标准中明确指出:“小学数学的教学内容绝大多数可以联系学生的生活实际,找准每一节教材内容与学生生活实际的“切入点”可让学生产生一种熟悉感、亲切感“,以及“数学教学活动中,教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索的过程中真正理解和掌握基本的数学知识与技能。”要将这个理念落实在课堂教学中,就要求教师能根据教学的具体内容,选择恰当的学习方式,并巧妙创设学生主动探索的机会,变“接受学习”为“创造学习”,让学生在观察、操作、讨论、交流、归纳、整理、概括的过程中学习新知,充分以学生为主体,逐步培养学生的创新意识,形成初步的探索和解决问题的能力。根据以上思想,本节课的设计我主要从尊重学生已有的知识经验;在观察与操作中去亲身体验知识的形成过程,掌握约分的方法。
尊敬的领导,评委老师:大家好,今天我说课的题目是北师大版小学数学五年级上册第一单元第五节《除得尽吗》。我将会以说教材、说学生、说教法、说教学过程、说教学效果评测、说反思等六各方面进行我的说课。一:说教材《除得尽吗》本节内容是本单元的第五节,是在学生已经学习了整数除整数、整数除小树、小树除小数、以及四舍五入保留若干位小树的基础之上进行设置的。本节内容的主要知识点就是让学生认识循环小数、表示循环小数以及“四舍五入”法取其近似值,总体难度不大。二:说学生对于五年级学生而言,已经在四年级学习了“四舍五入”法,所以在本节新授教学中已经有了一定的基础。对于教师的教和学生的学都有了一定的促进作用。
5、总结学生解题过程中存在的问题,并指导并纠正、分析根本原因。6、通过演示法给学生演示完整、详细和规范的解题过程。7、总结有理数的运算顺序和方法。先让学生自己总结运算顺序,培养学生自己思考的能力,然后教师进行纠正。等这个过程结束之后,再给出完整的运算顺序和方法。8、出示练习题,巩固所学知识,教师及时指正。9、最后布置课后作业题。四、教学评价本节课我注重体现“以教师为主导、学生为主体、以学生发展为本的教学思想”。1、通过具体的题目引入,让学生先以自己的知识体系解决问题,在这过程中发现问题、归纳总结原因,并予以解决。一方面复习前面所学的基本运算,另一方面完善学生的知识体系。2、培养学生自主学习与探究的能力、分析与解决问题的能力。
“数的运算”是“数与代数”学习领域的重要内容,减法是其中的一种基本运算.本课的学习远接小学阶段关于整数、分数(包括小数)的减法运算,近承第四节有理数的加法运算.通过对有理数的减法运算的学习,学生将对减法运算有进一步的认识和理解,为后继诸如实数、复数的减法运算的学习奠定了坚实的基础.鉴于以上对教学内容在教材体系中的位置及地位的认识和理解,确定本节课的教学目标如下:1、知识目标:经历探索有理数的减法法则的过程,理解有理数的减法法则,并能熟练运用法则进行有理数的减法运算.2、能力目标:经历由特例归纳出一般规律的过程,培养学生的抽象概括能力及表达能力;通过减法到加法的转化,让学生初步体会转化、化归的数学思想.3、情感目标:
说明:此处进行的是一次尝试应用乘方运算来解决开头的问题,互相呼应,以体现整节课的完整性,把学生开始的兴趣再次引向高潮。趣味探索:一张薄薄的纸对折56次后有多厚?试验一下你能折这么厚吗?说明:这个探索实际上仍是对学生应用能力的一个检查,纸对折56次,用什么运算来计算比较方便,另外计算过程中可使用计算器,进一步加深对乘方意义的理解(五)作业P56页1、2说明:这两个习题是对课本上例题的简单重复和模仿,通过本节课的学习,多数学生应该可以较轻松地完成。总之,在整个教学设计中,我始终以学生为课堂主体,让他们积极参与到教学中来,不断从旧知识中获得新的认识,通过不断进行联系比较,让学生主动自觉地去思考、探索、总结直至发现结果、发现"方法",进而优化了整个教学。
一、教材分析(一)教材的地位和作用:本节课是北师大七年级(上)义务教育课程标准实验教材第2章第6节第一课时的内容。它是学生在已经掌握有理数加法、减法、乘法、除法、乘方以后进行学习的。它是建立在有理数的有关概念和各种运算的意义及法则的基础上进行的综合性运算。它是本章的重点之一,是以上各种运算的继续和发展,对学生运算能力和数学学习能力的培养,有着十分重要的意义,同时也是初中数学运算的重要内容之一,是后续学习的基础。(二)教学目标的确立:参照义务教育阶段《数学课程标准》的要求,确定本节课的教学目标如下:1、知识技能目标:(1)掌握有理数的混合运算法则及运算顺序。(2)熟练的进行有理数的混合运算。2、能力目标:培养学生的观察能力和运算能力。3、情感与态度目标:(1)培养学生在计算前认真审题,确定运算顺序,计算中按步骤审慎进行,并养成验算的良好的学习习惯。
五、两点说明。(一)、板书设计这节课的板书我是这样设计的,在黑板的正上方中间处写明课题,然后把板书分为左右两部分,左边是有理数除法的法则,为了培养学生把文字语言转化成符号语言的能力,板书中只出现两种法则的符号表示,从而加深他们对法则的理解,板书右边是学生的板演,以便于比较他们做题中出现的问题。板书下方是课堂小结,重点写出:有理数的除法可以转化成有理数的乘法,以体现本节课中的重要的数学思想方法。有理数的除法板演练习:有理数除法的法则:a÷b=a×1/b(b≠0) 1a>0,b>0,a/b>0;a0; 2a>0,b0,a/b<0. 3课堂小结:有理数的除法 有理数的乘法转化(二)、时间分配:教学过程中的八个环节所需的时间分别为:1分钟、2分钟、5分钟、8分钟、8分钟、16分钟、2分钟、1分钟。
将一个圆分成三个大小相同的扇形,你能计算出它们的圆心角的度数吗?你知道每个扇形的面积和整个圆的面积的关系吗?与同伴交流设计意图:通过引导学生根据圆心角与圆心角的比例确定扇形面积与整圆的面积关系为后面学习扇形面积公式做铺垫,体现知识的延续性。(六)、巩固练习.如图,把一圆分成三个扇形,你能求出这三个扇形的圆心角吗?若圆的半径为2,你能求出各部分的面积吗?(七)、课堂小结学完这节课你有哪些收获?设计意图:通过小节让学生对所学知识进行梳理,使所学知识能合理地纳入自身的知识结构。(八) 布置作业:中等学生:P125. 1优等生: P125. 2,3我针对学生素质的差异设计了有层次的训练题,留给学生课后自主探究,这样即使学生掌握基础知识,又使学有余力的学生有所提高,从而达到拔尖和“减负”的目的。
四、教学过程分析为有序、有效地进行教学,本节课我主要安排了以下教学环节:(一)复习导入主要复习一下三种统计图,为接下来介绍三种统计图的特点及根据实际问题选取适当的统计图做好知识准备。(二)问题探究选取课本上“小华对1992~2002年同学家中有无电视机及近一年来同学在家看电视的情况”的3个调查项目,进而设计3个探究问题从而加深学生对每一种统计图的进一步认识,至此用自己的语言总结出每一种统计图的特点。(三)实践练兵这一环节通过2个实际问题的设计,通过学生对问题的分析、讨论,使学生认识到适当选取统计图有助于帮助人们去更快速、更准确地获取信息。(四)课堂小结总结这一节课所学的重点知识,这部分主要是让学生自己去总结,看看这节课自己有哪些收获。(五)作业布置进一步巩固本节课所学的知识,达到教学效果。以上就是我对这节课的见解,不足之处还望批评和指正。
新建成的红星中学,首次招收七年级新生12个班共500人,学校准备修建一个自行车车棚.请问需要修建多大面积的自行车车棚?请你设计一个调查方案解决这个问题.解析:决定自行车车棚面积的因素有两个,即自行车的数量与每辆自行车的占地面积.因此收集数据的重点应围绕这两个因素进行.解:调查方案如下:(1)对全体新生的到校方式进行问卷调查.调查问卷如下:你到校的方式是骑自行车吗?A.经常是 B.不经常是C.很少是 D.从不是(2)根据调查问卷结果分类统计骑自行车的人数;(3)实际测量或估计存放1辆自行车的大约占地面积;(4)根据学校的建设规划、财力等因素确定自行车车棚的面积.方法总结:确定调查方案时必须明确两个问题:(1)需要收集哪些数据?(2)采用什么方式进行调查可以获得这些数据?探究点三:从图表中获取信息小冰就公众对在餐厅吸烟的态度进行了调查,并将调查结果制作成如图所示的统计图,请根据图中的信息回答下列问题:
1. 小明的脚长23.6厘米,鞋号应是 号。2.小亮的脚长25.1厘米,鞋号应是 号。3.小王选了25号鞋,那么他的脚长约是大于等于 厘米且小于 厘米。小结:刚才同学们都体会到了分组编码使原来繁多,无叙的数据简化、有序。因此分组、编码是整理数据的一种重要的方法,在工商业、科研等活动中有广泛的应用(四)反馈练习课内练习以下是某校七年级南,女生各10名右眼裸视的检测结果:0.2,0.5,0.7(女),1.0,0.3(女),1.2(女),1.5,1.2,1.5(女),0.4(女),1.5,1.1,1.2(女),0.8(女),1.5(女),0.6(女),1.0(女),0.8,1.5,1.2(1)这组数据是用什么方法获得的?(2)学生右眼视力跟性别有关吗?为了回答这个问题,你将怎样处理这组数据?你的结论是什么?(五). 归纳小结,体味数学快乐通过本节课的学习,你有那些收获?(课堂小结交给学生)数据收集的方法:直接观察、测量、调查、实验、查阅文献资料、使用互连网等。整理数据的方法:分类、排序、分组编码等。(学生可能还会指出鞋码和脚长之间的关系等)
1.会用度量法和叠合法比较两个角的大小.2.理解角的平分线的定义,并能借助角的平分线的定义解决问题.3.理解两个角的和、差、倍、分的意义,会进行角的运算.一、情境导入同学们,如图是我们生活中常用的剪刀模型,现在考考大家,剪刀张开的两个角哪个大呢?二、合作探究探究点一:角的比较在某工厂生产流水线上生产如图所示的工件,其中∠α称为工件的中心角,生产要求∠α的标准角度为30°±1°,一名质检员在检验时,手拿一量角器逐一测量∠α的度数.请你运用所学的知识分析一下,该名质检员采用的是哪种比较方法?你还能给该质检员设计更好的质检方法吗?请说说你的方法.解析:角的比较方法有测量法和叠合法,其中测量法更具体,叠合更直观.在质检中,采用叠合法比较快捷.
接着引导学生进一步思考截面可不可以是特殊的三角形:等腰三角形和等边三角形。教师用课件演示切截过程,展示切截位置的变化引起截面形状的变化,图形特殊化。使学生的思考经历由一般到特殊的过程。2.截面是其他形状学生先猜想正方体的截面还有可能是什么形状,再利用实验操作型课件对正方体进行无限次的切截,让学生在无限次切截的过程中体会截面产生和变化的整个过程,发现截面产生和变化的规律。学生从切截活动中发现猜想时没有想到的截面图形,体会到探索的乐趣。教师再引导学生归纳正方体截面边数的规律。学生的认知得到升华。接着引导学生归纳截面形状中的特殊四边形。二.圆柱体和圆锥体的截面学生先猜想圆柱体的截面可能是什么形状,教师利用实验操作型课件对圆柱体进行无限次的切截,学生观察截面形状。
还有其他解法吗?从中让学生体会解一元一次方程就是根据是等式的性质把方程变形成“x=a(a为已知数)”的形式(将未知数的系数化为1),这也是解方程的基本思路。并引导学生回顾检验的方法,鼓励他们养成检验的习惯)5、提出问题:我们观察上面方程的变形过程,从中观察变化的项的规律是什么?多媒体展示上面变形的过程,让学生观察在变形过程中,变化的项的变化规律,引出新知识.师提出问题:1.上述演示中,题目中的哪些项改变了在原方程中的位置?怎样变的?2.改变的项有什么变化?学生活动:分学习小组讨论,各组把讨论的结果上报教师,最好分四组,这样节省时间.师总结学生活动的结果:-2x改变符号后从等号的一边移到另一边。师归纳:像上面那样,把方程中的某项改变符号后,从方程的一边移到另一边的变形叫做移项.这里应注意移项要改变符号.
1.上述演示中,题目中的哪些项改变了在原方程中的位置?怎样变的?2.改变的项有什么变化?学生活动:分学习小组讨论,各组把讨论的结果上报教师,最好分四组,这样节省时间.师总结学生活动的结果:-2x改变符号后从等号的一边移到另一边。师归纳:像上面那样,把方程中的某项改变符号后,从方程的一边移到另一边的变形叫做移项.这里应注意移项要改变符号.(三)理解性质,应用巩固师提出问题:我们可以回过头来,想一想刚解过的方程哪个变化过程可以叫做移项.学生活动:要求学生对课前解方程的变形能说出哪一过程是移项.对比练习: 解方程:(1) X+4=6 (2) 3X=2X+1(3) 3-X=0 (4) 9X=8X-3学生活动:把学生分四组练习此题,一组、二组同学(1)(2)题用等式性质解,(3)(4)题移项变形解;三、四组同学(1)(2)题用移项变形解,(3)(4)题用等式性质解.师提出问题:用哪种方法解方程更简便?解方程的步骤是什么?(答:移项法;移项、化简、检验.)
一是先用计算器算出下面各题的积,再找一找有什么规律。目的是活跃气氛,激发学生探索数学规律的兴趣,为下面的数学探险作铺垫。二是数学探险。在这个步骤中,我先出示8个1乘8个1,学生用计算器计算的答案肯定不一样,因为学生带来的计算器所能显示的数位不一样,而且这些计算器所能显示的数位都不够用,也就是这道题目计算器不能解决。这时我提问:“你觉得问题出在哪儿?是我们错了,还是计算器错了?你能想办法解决吗?请四人小组讨论一下解决方案。”这样安排的目的是引发矛盾冲突,激发他们解决问题的需要和欲望。在学生找不到更好的解决方法时,引导学生向书本请教,完成课本第101页想想做做的第四题。让学生利用计算器算出前5题的得数,引导学生通过观察、比较、归纳、类比发现这些算式的规律,填写第6个算式,发展学生的合情推理能力,同时也让学生领略了数学的神奇。
②.通过“由文字语言到符号语言”再“由符号语言到文字语言”让学生从正反两方面双向建构.突破难点策略:①.分三步分散难点:引入时大量的实际情景,让学生体会到代数式存在的普遍性;让学生给自己构造的一些简单代数式赋予实际意义,进一步体会代数式的模型思想;通过“主题研究”等环节进一步提高解决实际问题的能力.②.适时安排小组合作与交流,使学生在倾听、质疑、说服、推广的过程中得到“同化”和“顺应”,直至豁然开朗,突破思维的瓶颈.2.生成预设为生成服务,本案编代数式、主题研究等环节的设计为学生精彩的生成提供了很好的平台,在实际教学过程中,教师要注重生成信息的捕捉,善于发现学生思维的亮点,及时进行引导和激励,并根据具体教学对象,适当调整教与学,使教学过程真正成为生成教育智慧和增强实践能力的过程.让预设与生成齐飞.
(六)当堂达标(练习二、三 10分钟)练习二让学生口答,通过练习,巩固学生对直线、射线、线段表示方法的掌握。练习三让学生去黑板板演,教师检验对错并重点强调几何语言的表述。文字语言和图形语言之间的转化是难点,着重练习文字语言向图形语言的转化,提高几何语言的理解与运用能力。当堂达标是检查学习效果、巩固知识、提高能力的重要手段。通过练习,学生会体验到收获和成功,发现存在的不足,教师也及时获得信息反馈,以便课下查漏补缺。 (七)小结(3分钟)教师提问“这节课我们学了哪些知识?”请学生回答,教师做适当补充。课堂小结对一节课起着“画龙点晴”的作用,它能体现一节课所讲的知识和数学思想。因此,在小结时,教师引导学生概括本节内容的重点。
解析:水是生命之源,节约水资源是我们每个居民都应有的意识.题中给出假如每人浪费一点水,当人数增多时,将是一个非常惊人的数字,100万人每天浪费的水资源为1000000×0.32=320000(升).所以320000=3.2×105.故选B.方法总结:从实际问题入手让学生体会科学记数法的实际应用.题中没有直接给出数据,应先计算,再表示.探究点二:将用科学记数法表示的数转换为原数已知下列用科学记数法表示的数,写出原来的数:(1)2.01×104;(2)6.070×105.解析:(1)将2.01的小数点向右移动4位即可;(2)将6.070的小数点向右移动5位即可.解:(1)2.01×104=20100;(2)6.070×105=607000.方法总结:将科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.三、板书设计借助身边熟悉的事物进一步体会大数,积累数学活动经验,发展数感、空间感,培养学生自主学习的能力.
在线
客服