北师大初中八年级数学下册角平分线教案
-
- 页数:4页
- 字数:约 3094 字
- 大小:1M
- 格式:.doc
- 版本:Office2016及以上版本
- 作者:Inge设计
角平分线教案
1.复习角平分线的相关知识,探究归纳角平分线的性质和判定定理;(重点)
2.能够运用角平分线的性质和判定定理解决问题.(难点)
一、情境导入
问题:在S区有一个集贸市场P,它建在公路与铁路所成角的平分线上,要从P点建两条路,一条到公路,一条到铁路.
问题1:怎样修建道路最短?
问题2:往哪条路走更近呢?
二、合作探究
探究点一:角平分线的性质定理
【类型一】应用角平分线的性质定理证明线段相等
如图,在△ABC中,∠C=90,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF.求证:(1)CF=EB;(2)AB=AF+2EB.
解析:(1)根据角平分线的性质,可得点D到AB的距离等于点D到AC的距离,即CD=DE.再根据Rt△CDF≌Rt△EBD,得CF=EB;(2)利用角平分线的性质证明△ADC和△ADE全等得到AC=AE,然后通过线段之间的相互转化进行证明.
证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC.在Rt△DCF和Rt△DEB中,∵∴Rt△CDF≌Rt△EBD(HL).∴CF=EB;
(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在△ADC与△ADE中,∵
∴△ADC≌△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.
方法总结:角平分线的性质是判定线段相等的一个重要依据,在应用时一定要注意是两条“垂线段”相等.
【类型二】角平分线的性质定理与三角形面积的综合运用
如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC的长是()
A.6 B.5 C.4 D.3
解析:过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DF=DE=2,∴S△ABC=42+AC2=7,解得AC=3.故选D.
方法总结:利用角平分线的性质作辅助线构造三角形的高,再利用三角形面积公式求出线段的长度是常用的方法.
【类型三】角平分线的性质定理与全等三角形的综合运用
如图所示,D是△ABC外角∠ACG的平分线上的一点.DE⊥AC,DF⊥CG,垂足分别为E,F.求证:CE=CF.
解析:由角平分线上的性质可得DE=DF,再利用“HL”证明Rt△CDE和Rt△CDF全等,根据全等三角形对应边相等证明即可.
证明:∵CD是∠ACG的平分线,DE⊥AC,DF⊥CG,∴DE=DF.在Rt△CDE和Rt△CDF中,∵∴Rt△CDE≌Rt△CDF(HL),∴CE=CF.
方法总结:全等三角形的判定离不开边,而角平分线的性质是判定线段相等的主要依据,可作为判定三角形全等的条件.
探究点二:角平分线的判定定理
【类型一】角平分线的判定
如图,BE=CF,DE⊥AB的延长线于点E,DF⊥AC于点F,且DB=DC,求证:AD是∠BAC的平分线.
解析:先判定Rt△BDE和Rt△CDF全等,得出DE=DF,再由角平分线的判定可知AD是∠BAC的平分线.
证明:∵DE⊥AB的延长线于点E,DF⊥AC于点F,∴∠BED=∠CFD,∴△BDE与△CDF是直角三角形.在Rt△BDE和Rt△CDF中,∵
∴Rt△BDE≌Rt△CDF(HL),∴DE=DF.∵DE⊥AB,DF⊥AC,∴AD是∠BAC的平分线.
方法总结:证明一条射线是角平分线的方法有两种:一是利用三角形全等证明两角相等;二是角的内部到角两边距离相等的点在角平分线上.
【类型二】角平分线的性质和判定的综合
如图所示,△ABC中,AB=AC,AD是∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E、F.下面给出四个结论,①AD平分∠EDF;②AE=AF;③AD上的点到B、C两点的距离相等;④到AE、AF距离相等的点,到DE、DF的距离也相等.其中正确的结论有()
A.1个 B.2个 C.3个 D.4个
解析:由AD平分∠BAC,DE⊥AB,DF⊥AC可得DE=DF,由此易得△ADE≌△ADF,故∠ADE=∠ADF,即①AD平分∠EDF正确;②AE=AF正确;中垂线上的点到两端点的距离相等,故③正确;∵④到AE、AF距离相等的点,在∠BAC的角平分线AD上,到DE、DF的距离相等的点在∠EDF的平分线DA上,两者同一条直线上,所以到DE、DF的距离也相等正确,故④正确;①②③④都正确.故选D.
方法总结:运用角平分线的性质或判定时,可以省去证明三角形全等的过程,可以直接得到线段或角相等.
【类型三】添加辅助线解决角平分线的问题
如图,△ABC的∠ABC和∠ACB的外角平分线交于点D.求证:AD是∠BAC的平分线.
解析:分别过点D作DE、DF、DG垂直于AB、BC、AC,垂足分别为E、F、G,然后利用角平分线上的点到角两边的距离相等可知DE=DG,再利用到角两边距离相等的点在角平分线上来证明.
证明:分别过D作DE、DF、DG垂直于AB、BC、AC,垂足分别为E、F、G.∵BD平分∠CBE,DE⊥BE,DF⊥BC,∴DE=DF.同理DG=DF,∴DE=DG,∴点D在∠BAC的平分线上,∴AD是∠BAC的平分线.
方法总结:在遇到角平分线的问题时,往往过角平分线上的一点作角两边的垂线段,利用角平分线的判定或性质解决问题.
【类型四】线段垂直平分线与角平分线的综合运用
如图,在四边形ADBC中,AB与CD互相垂直平分,垂足为点O.
您可能喜欢的文档
查看更多北师大初中八年级数学下册三角形三条内角的平分线教案
- 页数:2页
- |大小:1M
北师大初中七年级数学下册三角形的中线、角平分线、高教案
- 页数:4页
- |大小:1M
北师大初中七年级数学下册角平分线的性质教案
- 页数:5页
- |大小:1M
北师大初中八年级数学下册平方差公式教案
- 页数:3页
- |大小:1M
北师大初中八年级数学下册平移的认识教案
- 页数:3页
- |大小:2M
北师大初中八年级数学下册因式分解教案
- 页数:2页
- |大小:1M
北师大初中八年级数学下册分式的乘除法教案
- 页数:4页
- |大小:1M
热门课件教案
县综合行政执法局2023年工作总结和2024年工作计划
- 页数:8页
- |大小:28.37KB
- 课件教案
2023年区实施乡村振兴战略工作总结
- 页数:6页
- |大小:27.90KB
- 课件教案
XX区文旅体局2023年工作总结 及2024年工作安排
- 页数:8页
- |大小:32.41KB
- 课件教案
XX区民政局党支部开展主题教育工作情况总结报告
- 页数:3页
- |大小:24.47KB
- 课件教案
镇2023年工作总结和2024年工作谋划
- 页数:6页
- |大小:31.68KB
- 课件教案
关于2024年上半年工作总结和下半年工作计划
- 页数:5页
- |大小:29.72KB
- 课件教案
今日更新
5月份主题教育工作情况总结汇报
- 页数:3页
- |大小:136.87KB
××县招商局2024年上半年工作总结
- 页数:12页
- |大小:142.54KB
×××公安局机关党委上半年党建工作总结
- 页数:7页
- |大小:186.25KB
《2019—2024年全国党政领导班子建设规划纲要》实施情况的工作总结3800字
- 页数:6页
- |大小:29.16KB
“转观念、勇担当、新征程、创一流”主题教育活动阶段性工作总结
- 页数:3页
- |大小:22.76KB
“四零”承诺服务创建工作总结
- 页数:5页
- |大小:39.83KB