一、观察思考,形成概念观察图形,了解生活中无处不在的长方形:(让学生举例说说生活中还有哪些物品有长方形的存在)思考:长方形跟我们前面学习的平行四边形有什么关系?活动1:利用一个活动的平行四边形教具演示,使平行四边形的一个内角变化,请同学们注意观察.当移动到一个角是直角时停止,让学生观察这是什么图形?(小学学过的长方形)引出本节课题及矩形定义.设计意图:通过平行四边形教具,操作探究矩形与平行四边形之间的关系,帮助学生体会矩形与平行四边形的区别和联系,感受由平行四边形变为矩形的过程,为研究矩形的性质做铺垫.在展示平行四边形教具的变化情况后让学生说出它的特征,尤其是和平行四边形相比较特殊的性质.矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).教师强调分析:矩形只比平行四边形多一个条件:“有一个角是直角”.注意:矩形是特殊的平行四边形.平行四边形不一定是矩形.思考:因为矩形是平行四边形,所以它具有平行四边形的所有性质,由于它有一个角为直角,它是否具有一般平行四边形不具有的一些特殊性质呢?
解:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折叠知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.设BE=DE=x,则AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法总结:矩形的折叠问题是常见的问题,本题的易错点是对△BED是等腰三角形认识不足,解题的关键是对折叠后的几何形状要有一个正确的分析.三、板书设计矩形矩形的定义:有一个角是直角的平行四边形 叫做矩形矩形的性质四个角都是直角两组对边分别平行且相等对角线互相平分且相等经历矩形的概念和性质的探索过程,把握平行四边形的演变过程,迁移到矩形的概念与性质上来,明确矩形是特殊的平行四边形.培养学生的推理能力以及自主合作精神,掌握几何思维方法,体会逻辑推理的思维价值.
在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)当△ABC满足AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四边形AFBD是矩形.方法总结:本题综合考查了矩形和全等三角形的判定方法,明确有一个角是直角的平行四边形是矩形是解本题的关键.三、板书设计矩形的判定对角线相等的平行四边形是矩形三个角是直角的四边形是矩形有一个角是直角的平行四边形是矩形(定义)通过探索与交流,得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题.通过开放式命题,尝试从不同角度寻求解决问题的方法.通过动手实践、合作探索、小组交流,培养学生的逻辑推理能力.
2.已知:如图 ,在△ABC中,∠C=90°, CD为中线,延长CD到点E,使得 DE=CD.连结AE,BE,则四边形ACBE为矩形吗?说明理由。答案:四边形ACBE是矩形.因为CD是Rt△ACB斜边上的中线,所以DA=DC=DB,又因为DE=CD,所以DA=DC=DB=DE,所以四边形ABCD是矩形(对角线相等且互相平分的四边形是矩形)。四、课堂检测:1.下列说法正确的是( )A.有一组对角是直角的四边形一定是矩形 B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形 D.对角互补的平行四边形是矩形2. 矩形各角平分线围成的四边形是( )A.平行四边形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的说法是否正确(1)有一个角是直角的四边形是矩形 ( )(2)四个角都是直角的四边形是矩形 ( )(3)四个角都相等的四边形是矩形 ( ) (4)对角线相等的四边形是矩形 ( )(5)对角线相等且互相垂直的四边形是矩形 ( )(6)对角线相等且互相平分的四边形是矩形 ( )4. 在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使四边形ABCD是矩形.你添加的条件是 .(写出一种即可)
一、情景导入,引出新知师:“上节课,奇奇妙妙邀请我们去参观了他们的家。这节课,又是哪个小朋友要邀请我们去参观他的家呢?”[出示xxx的照片]师:“这节课是xxx邀请我们去参观他的家。xxx,你要带我们去哪里看一看呢?”[PPT展示xxx家的阳台、房间和网络上的花园图片]<xxx指出自己的房间>师:“这节课,我们和xxx一起去参观房间。”[出示课题:10.我的房间]<学生跟读课题>二、循序渐进,程序教学(一)学习词语:房间[出示图片:房间]“xxx的房间是什么样子的?”“我们请xxx来介绍一下自己的房间。”(教师带领xxx说一说自己的房间有什么:大床、小床、电视)“这个有床、有电视,可以睡觉休息的地方就是房间。”[出示词卡:房间]
2、了解测量在生活中的应用,激发幼儿参与测量的兴趣。3、愿意与同伴合作交流,解决问题。活动准备:1、幼儿已有初步的测量经验。2、尺子、绳子、软尺、吸管、小棒、短积木、铅笔、筷子、纸卡段、盒子、书等物品。3、记录表、水彩笔、磁性板。活动过程:一、引题:提出任务今天小朋友来当“小小测量员”,用三种不同的工具来测量相同的一条边,并把测量结果记录下来。
此探究活动的目的是为了说明马克思主义哲学是科学完整的体系。在探究活动时可以首先向学生简单介绍西方哲学的发展历史,使学生对马克思主义哲学在整个西方哲学中的位置和地位有个大致了解。离开了这个大的背景,学生对马克思主义哲学就容易摸不着头绪。马克思主义哲学之前的唯物主义的局限性表现在:古代朴素的带有辩证法性质的唯物主义主要是追问世界的本原问题,这时的哲学缺乏近代科学作为基础,因此它更多的是一种猜测。它虽然看到了世界的联系和变化,但它还无法理解联系和变化背后的基础和原因。近代形而上学的唯物主义主要是追问人的认识问题,即人的认识的来源是什么,是什么保证人的认识的可靠性。但它对人的认识问题的解决主要是立足于对世界的一种直观观察,认为人的认识来源于对世界的直观的、机械的反映。它不理解人的实践活动,不理解人是在改造世界的过程中认识世界,人的认识是在实践基础上的能动反映。
教学重点难点:1、哲学与时代的关系(重点)2、马克思主义哲学是科学的世界观和方法论(重点)3、实践的观点在马克思主义哲学中占有重要的地位和作用(重点、难点)4、马克思主义中国化的三大理论成果(重点)教学课时安排:3课时【导入新课】德国人和中国人一同坐火车从德国的法兰克福去巴黎。途中上来一位客人,这位客人将手里端着的鱼缸放在空座上。德国人开始发问:“您能告诉我这鱼的名称吗?它在生物学上属于什么类别?它在科学上的意义又是什么?”中国人则问:“这种鱼是红烧好吃,还是清蒸更好吃一点?”这一故事体现了中西方思维方式的差异,这一差异也折射出中西方哲学上的差异。西方哲学起源于古希腊哲学,表现为对各种现象之后的原因的关注和对确定性的追求,强调理性认知。中国哲学主要是儒家哲学,主要集中在政治伦理方面,表现为对人的关怀和规范,强调感性体验。中西方哲学为何出现这样的差异?哲学与政治、经济有怎样的关系?
1.先用教具演示四边形的两条对角线在保持相互平分的前提下进行伸缩,当他们的长度相等时让学生观察猜想平行四边形变成矩形并引导学生证明,目的激发学生的探究兴趣,体会证明的必要性。2.研究工人师傅检测门窗方法的数学原理,让学生思考不同检测方法,目的是开拓学生的思维空间。3.接着让学生按顺序画出含有三个直角的四边形,观察探索矩形的判定定理2,在证明这个猜想,目的是通过学生动手画图实践观察,猜想,验证,感受到动手操作,猜想的乐趣培养学生的猜想能力和推理能力。4.总结矩形的三个判定方法,并应用这3个方法做10道判定题,目的是进一步理解强化矩形的三个判定方法。5例题和随堂练习,目的是引导学生关注判定定理的应用,学会思维提高分析能力,体会注重解题研究是提高解题能力的有效途径。6小结:学生对本节课的体会,收获进行总结。
设计意图:让学生感受矩形与直角三角形有密切的关系,引导学生归纳总结直角三角形的性质,有助于生形成系统化的知识,培养良好的学习习惯.(三)巩固新知 例1. 已经:矩形ABCD的两条对角线相交于点0, ∠AOB=60°, AB = 4cm, 求矩形对角线的长? 在黑板上作图是体现数学老师基本功的一个方面,让学生巩固矩形的性质,培养学生的解题规范、过程完整、条理清晰的解题习惯。例2.(投圈游戏)四个同学正在做投圈游戏,他们分别站在一个长方形的四个顶点处,目标物放在对角线的交点处,这个游戏对每个人公平么?为什么?这道题很基础,考察举行的对角线相等且互相平分,通过这个游戏向学生渗透转化、类比、思想方法。(四)课堂练习我设计了基础题和拓展练习 1.自我检测 (选择填空题)
2.三角形的分类。师:你能给三角形按照不同的标准进行分类吗?生用自己喜欢的方式整理分类,然后汇报:生:三角形按角分为锐角三角形、直角三角形、钝角三角形。师:什么是锐角三角形、直角三角形、钝角三角形?生:三个角都是锐角的三角形叫做锐角三角形;有一个角是直角的三角形叫做直角三角形;有一个角是钝角的三角形叫做钝角三角形。生:三角形按边分为不等边三角形(三条边都不相等)、等腰三角形(等边三角形) 等腰三角形的两条边相等,等边三角形的三条边都相等。3.四边形分类。师:你能给四边形分类吗?生:四边形分为平行四边形和梯形;平行四边形包括长方形和正方形,长方形又包括正方形;梯形包括等腰梯形和直角梯形。4.直线、射线和线段的关系。小组内互相交流,然后汇报:
一、理解教材《认识物体和图形》人教版小学数学1年级上册第四单元内容,是学生学习“空间与图形”知识的开始,主要从形状这一角度来使学生初步认识物体和图形。这一单元包括:立体图形的初步认识和平面图形的初步认识。因为现实生活中孩子们接触的大多是立体图形,所以教材把认识立体图形排在平面图形之前。教材在这部分内容的编排上体现了新课标的两大理念:注重知识与生活的联系;注重在活动中学习知识,通过学生亲自动手操作,自然地完成学习过程,掌握知识。二、学生分析儿童对形状的知觉是通过视觉、触觉、运动觉协同运动的,这有利于增进他们对所处环境的认识,为将来学习几何知识打下良好的基础。其实儿童在很小的时候就开始接触各种形状的物体,关于形状,他们已经有了较多的的感知经验,只是这些经验太感性,需要进一步抽象化,形成简单的几何概念,发展初步的空间观念。
尊敬的各位评委、各位老师,大家好,我今天说课的内容是九年义务教育人教版小学数学一年级上册第四单元《认识图形》的第一课时——认识图形。下面我将从说教材、说教法与学法、说教学过程和说板书设计这四方面来谈谈我对本课的教学设想。一、说教材: 1、教材分析 首先我对本教才进行简单的分析,课程标准把空间与图形作为义务教育阶段培养学生初步创新精神和实践能力的一个重要的学习内容。《认识图行》是本册教材《认识图形》的起始课,旨在认识长方体、正方体、圆柱和球这些立体图形,认识这几种图形有助于发展学生的空间观念,培养学生初步的观察能力,动手操作能力和交流能力。 2、说教学目标 依据一年级学生的心理特点和的认知能力,我确定了以下教学目标: 1、知识与技能:通过观察操作,初步认识长方体,正方体,球和圆柱体。 2、过程与方法:在观察、操作、比较等活动过程中,培养学生抽象、概括、实践、创新能力,建立空间观念。
【课时安排】 1课时【教学过程】1.回顾梳理、归纳总结。师:我们学过哪些立体图形?生:长方体、正方体、圆柱体、圆锥体师:它们分别有哪些特征?师生共同总结立体图形的特征。 课件演示:长方体的特征:6个面是长方形(特殊情况有两个对面是正方形)相对的面完全相同;12条棱,相对的4条棱长度相等;8个顶点。正方体的特征:6个面都相等,都是正方形;12条棱都相等;8个顶点。圆柱的特征:上下两个面是完全相同的圆形,侧面是一个曲面,沿高展开一般是个长方形。上下一样粗;有无数条高,每条高长度都相等。
说教学过程第一课时(一)歌曲导入同学们会唱《没有共产党就没有新中国》吗?会唱的同学一起唱。师领唱(板书课题)同学们,没有共产党就没有新中国。那你理解的新中国是什么样的呢?(引导学生对比着旧中国来说)正是有了共产党的领导,我们中国人民才能当家做主,才能过上现在的幸福生活。那同学们,你们觉得共产党的成立对我们中国人来说,是不是开天辟地的大事。那这节课我们就跟随教材回到过去,了解一下这件开天辟的的大事---共产党的诞生。(二)思想的觉醒在旧社会,人们生活在水深火热中,但人们找不到改变现状的办法,1917年,俄国的十月革命,给我们中国带来了希望,带来了先进、科学的思想,那就是马克斯主义。一大批先进知识分子找到了指路的明灯,在马克斯主义的指导下,开始行动起来,拯救我们的国家,拯救我们的民族。各地中国共产党的早期组织开始建立,并且开展了一系列革命活动。1、新文化运动请同学们小组交流课下搜集的关于新文化运动的资料。(提出要求:整理出有效资料,全班交流)哪个小组想上台展示?(学生在展示时,教师摘取《新青年》和李大钊的信息重点引导并出示课件)请同桌议一议:李大钊为何不惧死亡?指名回答2、五四运动谁想上台交流课下搜集的五四运动的材料(根据学生回答,相机出示课件)小组讨论:为什么中国在巴黎和会上遭到不平等对待?(要求:整理出有效信息,准备全班交流)全班交流
在教学中我力求做到以下几点一、体现“活动性”,让学生在活动中体验。《新课标》明确指出:“让学生在具体的数学活动中体验数学知识。”因此,我在新授部分以学生喜欢摸子活动开始,以期激发他们学习的热情和兴趣,使学生在活动过程中感知“一定”、“可能”、“不可能”,进而能判断生活与数学中的“一定”、“可能”、“不可能”这三种情况。并能用自己的语言描述事情发生的三种情况;(然而在课堂中,让学生把这三个词语放在一起例举数学与生活中的实例吧,学生说起来还是有一定难度的,所以在教学中我只有通过自己先举例在让学生说,这时学生才能说出例子来。)最后又让学生小组合作学习感知体验可能性是有大小的,达到巩固与应用的目的。
学生总结得出:只有乘法和除法,都是按从左往右进行计算的。这个环节的教学,教师的“导”起着关键的作用,多媒体的展示也为学生的比较、分析、归纳出四则运算的方法有一定的促进作用。分散了教学的难度,挖掘了教材的深度,培养学生的发散思维。接着小结方法,教师:像我们以后遇到这样的加减法计算或乘除法计算的时候,应怎么样计算呢?得出并板书:在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。3、巩固练习教师课件出示:做一做让学生独立完成。再上台板演,并说说解题的方法和计算步骤,4、回顾与小结 这节课你学会了什么知识?是怎么学的?又有什么收获?七、板书设计: 72-44+85 72+85-44 987÷3×6 6÷3×987 987×6÷3 =28+85 =157-44 =329×6 =2×987 =5922÷3 =113 =113 =1974 =1974 =1974 在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
1.欣赏主题图,感知规律(1)师:最近小东家买了新房子,想请大家去做客,愿意吗?首先请大家欣赏一下小东家厨房的墙壁和装修图,他说他设计的这幅图既美观又有规律,可我总觉得乱七八糟的,请小朋友们认真观察一下,四人一组讨论一下到底有没有规律?有什么样的规律?(2)学生:合作交流,探索规律,然后汇报各组发现的规律。(对于学生发现的各种规律要积极地给予评价、鼓励,增加学习的信心)(3)师:老师发现有一部分同学观察出一些规律,可有些同学却很迷茫,下面老师和大家一起来探索这幅画面,看看到底有什么样的规律。先引导学生说说每一行都有哪些图形?它们是怎样排列的?第一行和第二行有什么关系,第二行和第三行有什么关系?——(借助课件演示,使学生发现相邻两行的前一行的第一个图形移到第二行的最后,其他图形统统往前平移一格)
在线
客服