还有一点思考是作为教师应该有这样一种认识,学生从自己的头脑中搜索有价值的数学知识储备,并对这些知识储备进行筛选和取舍,这是一种重要的能力。换句话讲,这就是学生分析问题和解决问题的能力,这种能力是需要培养的,这也是在第二学段“综合应用”中必须把握的准则。教学目标:1、让学生经历粉刷围墙的实践活动,巩固长方体表面积的计算方法,加强数学知识在实际生活中的应用。2、通过活动,培养学生收集、分析信息的意识和能力,使学生能根据实际情况,选择合理方案。3、让学生体验数学知识与生活的紧密联系,并利用数学知识科学地指导生活,感受成功。教学重点:整理分析和比较信息,制定方案。教学难点:策略的优化。教学准备:课前做好相关数据收集整理的准备工作,教师尤其要在课前了解学生调查的涂料价目。学生准备:计算器,记录纸等。
(3)按每千克涂料粉刷3.5 m2计算,可求出共需要涂料:1600÷3.5≈460(千克);(4)根据涂料的型号及费用,选择合适的涂料。师:选择涂料时,要考虑很多因素,如价格、耐用期、消费心理、环保等,要怎么选择呢?学生可以把几种涂料进行对比,一起讨论决定,同时学会在交流中理解接纳别人较好的建议:如:A型,优点:价格便宜,需要19桶,总共才5700元;缺点:耐用期太短,两年后又要重新粉刷;B-1型和B-2型,虽然桶装量不同,但价格和耐用期都处在中游水平;C型和D型,优点:耐用期长,最划算;缺点:价格太高,不符合人们的消费心理,也不可能持续那么长时间,至少5年就要更换一下样子。综合以上价格、耐用期、消费心理,选择B-1或B-2型比较划算。而这两种比较来看,B-2型更便宜一些,所以,最后确立用B-2型涂料。
一、 说教材(一)教材的内容“图形的旋转”是《义务教育课程标准实验教科书数学五年级下册》第一单元“图形的变换”的第一课时。(二)教材的地位和作用“图形的旋转”这部分教材是在二年级下册“平移和旋转”初步认识了生活中的旋转现象,能够较为准确的判断出某一物体的运动现象是“平移还是旋转”的基础上进一步明确旋转的含义,探索旋转的特征和性质,并让学生学会在方格纸上把简单图形旋转90°。是空间与图形领域的重要知识点,对发展学生的空间观念是一个渗透,是后续学习中心对称图形及其图形变换的基础,在教材中起着承上启下的作用。同时,旋转在日常生活中的应用也非常广泛,利用旋转可以帮助我们解决很多实际问题。(三)说教学目标根据上面的教材分析和学情分析,我觉得应该进一步发展学生的观察、归纳、概括等能力,发展学生有条理地思考及语言表达能力。为此,我觉得本节课应关注学生对旋转的特征和性质的探索过程,有意识地培养学生的实践、推理、归纳能力,真正理解性质的来源、本质和应用。
5.游戏活动:每人从信封袋中挑选一个自己最喜欢的分数卡片。(1)最简分数上讲台,和最简分数相同的分数起立。联系生活实际发散性思考。(2)从剩下的同学中找到自己的好朋友。帮最后两名同学找最简分数作朋友。判断并说明理由。按要求参加活动,综合考核学生判断最简分数和对分数进行约分的能力。创设生活情景,提供了一些现实的学习材料,把书本知识与学生的日常生活联系起来,使学生感受到数学来自生活,并不抽象;学好数学,为生活、生产服务,学数学真有价值。部分题目设计充满趣味性,把孩子拉入游戏之中,巩固本课的所有知识点。在引导学生积极观察、思考、联想、诱发学生的创新因素时,更应注意引导学生克服固定的思维模式,鼓励创造性地发现知识的规律和发表自己的独特见解。
三、总结规律、形成概念通过学生积极讨论,充分调动了学生的积极参与学习,既发挥了学生学习的主动性,又培养了学生的发散性思维,引导学生总结出:有的分数可以化成有限小数,有的分数不可以化成有限小数,请同学们再看一看什么样的分数可以化成有限小数?什么样的分数不可以化成有限小数?启发学生从分母的最小公倍数着手。 最后总结出:一个最简分数,如果分母中只含有素因数2和5,再无其它素因数,那么这个分数就可以化成有限小数,否则就不能化成有限小数。 例题2,请把下列小数化成分数,说说你是怎样把小数化成分数的? 0.06,0.4,1.8,2.45,1.465, 归纳:(学生为主,教师点拨)1、原来有几位小数,就在1后面写几个零作分母。原来的小数去掉小数点作分子。2、小数化成分数后,能约分的要约分。常用的因数是2和5。 对于小数如何化成分数的题目,课前了解到学生在小学时已学过把小数如何化成分数的方法,因而以学生练习为主,加以操练并巩固,有错误的及时纠正。
3、归纳求最小公倍数的方法。师:想一想找“共同的休息日”和“总人数”的过程,说一说可以怎样求两个数的最小公倍数?(①找倍数:从小到大依次找出各个数的倍数;②找公有:把各个数的倍数进行对照找出公有的倍数;③找最小:从公有的倍数中找出最小的一个。)4、看书88——89页,你还有什么问题?师:观察一下,为什么6和8这两个数不相同,却可以写出相同的公倍数呢?公倍数与原有的这两个数有什么关系?公倍数与它们的最小公倍数又有什么关系?教师画出数轴表示6和8的倍数,并可生动地比喻6宝宝步子小,要走3次才能到达24的位置。而8宝宝步子大,只要走两次就到达24的位置。到达24的位置后,6宝宝和8宝宝就碰面了。可见公倍数24是6和8的不同倍数。三、解决问题,深化理解(练习是理解知识,掌握知识,形成技能的基本途径,又是运用知识,发展智能,完善认知结构的重要手段。
1、说课内容:义务教育课程标准实验教科书数学(人教版)五年级下册第69页例1、例2。2、教材地位及作用:学生在三年级已初步认识分数,但那时所学的分数都是分子小于分母的分数,所以,学习这节内容,使学生比较全面地理解分数概念与培养对分数的数感,起着重要的作用。3、教学目标的确定:当今时代是经济全球化,文化多元化,社会信息化的时代,所以教育也要追随时代发展的步伐。遵循课标提出的“为了每一位学生的发展”教育理念,确定本课教学目标如下:①使学生理解真分数和假分数的意义;②通过学习真分数、假分数,加深学生对分数意义的理解;③使学生掌握真分数,假分数的特征;④培养学生的观察、比较、分析及概括的能力;⑤使学生在思考中、讨论中,体会学习数学的快乐,体验成功的喜悦。4、教学重点、难点:
这样设计,既复习了新课所必备的旧知,又自然合理地引入新课,一开始就紧紧吸引了学生的注意力,激发起学生的求知欲。(二)探索新知1、质数和合数的意义(教学例1)。(1)让学生拿出印发的写有例1原题的练习纸,利用学过的求约数的方法,写出1-12每个数的所有约数。(2)按照约数个数的多少进行分类,提出以下问题让学生讨论:①每一个数约数的个数相同吗?各有多少个约数?②按照每个数的约数个数的多少,可以把这些数分成几类?你认为是一类的用同一符号标出来。检查学生讨论情况并提问:你是怎样分的?为什么这样分?每一类各包括了哪几个数?让学生充分发表意见,然后师生共同归纳,并用投影出示三种分类情况:
1、完成练习十五第1题。(1)学生独立完成计算。(2)指名板演,交流计算方法。提问:你是按照什么运算顺序计算的?指出:分数加减混合运算的运算顺序与整数相同,参与运算的几个分数,可以分步通分,分步计算;也可以一次通分,再计算。计算结果要约成最简分数。[练习十五里异分母分数加减混合运算的纯计算题比较少,仅第1题里有4道。教学中适当补充三个分数加减混合运算的练习也是可以的,但不要耗费学生过多的学习精力。如果学生计算发生错误,要仔细分析原因,有针对性地采取有效的解决措施。]2、完成练习十五第2题。(1)读题,理解题意,说说自己的思路。(2)学生独立完成解答。10(3)+ 5(1)+ 6(1)= 30(9)+ 30(6)+ 30(5)= 30(20)= 3(2)(小时)(3)交流汇报,集体评价。3、完成练习十五第3题。(1)学生独立完成(1)、(2)小题,说说自己是怎样想的?(2)鼓励学生根据题中的已知条件提出用分数加、减法计算的不同问题,可以是一步计算的,也可以是两步计算的,并让学生尝试解决提出的一些问题。
1.创设情境,复习迁移。为了发挥学生学习的主动性,使旧知识起到正向迁移的作用,首先创设了动手操作的情境:课开始发给每位学生四张同样大小的长方形纸条,让学生折一折。把第一张纸条对折(也就是把这张纸条平均分成2份),把第二张纸条对折再对折(也就是把纸条平均分成4份),再把第三张3次对折(也就是把纸条平均分成8份)。接着,让学生画一画,用彩笔在等分后的纸条上分别涂出它们的一半。告诉学生,如果把每张纸条都看作单位"1",问学生:你能把涂色的部分用分数表示吗? 这一情境的设置,主要是让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好铺垫、迁移。并且在教学一开始,就能抓住学生爱动手以及直观思维的特点,激活课堂气氛,营造良好的学习开端。
体会当的不到整数结果的时候,用分数来表示他们的商,发现分数的分子是除法里的被除数,分母是除法里得出术,在总结完各部分关系与分母公式后,请他们推理一下,除法理由具体要求吗?(除数不能为零)那分数有没有要求呢?说一说理由,教师板书b≠0,引导进行验证从分母所表示的意义说明没有意义。三.掌握知识技能,实现数学思想的深入。结合本书的重点,难点,这一部分教学的目的要是学生理解并掌握,分数与除法之间的关系,并能在应用中形成一定的技能。在有层次的练习中,能体验到成功的快乐,建构知识的框架,实现数学思想的逐步深入。练习设计主要分为以下几个层次:① 强化分数与除法的关系:A组:7÷13=( )13 58 =( )÷( ) ( )÷9=5( ) B组:(课件展示:4平方米的花坛平均分成大小相同的5快?)
教材分析异分母分数加减法是第十册第五单元的一个学习内容。在这个内容之前,学生已掌握了分数的基本性质,学会了约分、通分、分数小数互化的方法,懂得了同分母分数加减法的算理,其中同分母分数加减法的计算方法是本节课最直接的知识起点。本节课的内容又是进一步学习分数加减法混合运算的基础,同时又是本单元的重点。五年级学生已经能理解只有分数单位相同的分数才能相加减的算理,并且已经初步具有用旧知识解决新问题的能力,也就是具有了一定的知识迁移能力。教学目标:1、理解异分母分数加减法的算理,并能正确计算。2、运用类比迁移的方法探索新知,培养推理能力和概括能力。3、渗透转化的数学思想,体验数学知识的探索性。教学重点:掌握异分母分数加减法的计算方法。教学难点:理解先通分,再加减的算理。教学流程:一、铺垫。
2、巧妙练习,强化意义《数学课程标准》指出:“引导学生把所学的数学知识应用到现实中去,以体会数学在现实生活中的应用价值。”为此,我设计如下练习:为1/2这一分数配图(课件),教师提出要求:大家看这里有一个分数,你能试着给它配几幅图吗?配出一幅的是达标,两幅以上的是良好,三幅以上的是优秀。借助激励性的语言,学生定会跃跃欲试,在优美的乐曲中大显身手。可能会出现这样的作品(课件)。那么同是分数1/2,为什么会出现这么多不同的作品呢?那是因为学生假设的整体不同,也就是单位“1”不同,因此所配出来的图是不一样的。(借助为分数配图这一环节,即强化了学生对分数意义的理解,又增强了学习的趣味性,符合小学生的心理特征,同时训练学生的思维,培养了学生思维的广阔性,灵活性。
(一)问题从情境中引入:演示情境:今天是小红的生日,妈妈为她准备了一个大蛋糕。爸爸将这块蛋糕平均分成了8份,小红吃了其中4块,爸爸吃了其中3块,妈妈吃了其中1块。接着教师引导学生用学过的分数知识来表达题意。〔设计意图:从身边的情境引入教学,激发学生的学习兴趣,体验数学的价值。同时又巧妙地运用情境让学生主动地复习旧识,为知识迅速迁移做好准备。〕师:你能根据刚才想到的分数知识,提出一个数学问题,并说说怎么列式解决吗?生1:小红和爸爸一共吃的是这个蛋糕的几分之几? (4/8+3/8)……生2:小红比爸爸多吃的了这个蛋糕的几分之几?(4/8-3/8) ……师:今天我们就一起来探究分数加、减法的计算方法。〔设计意图:问题意识,是互动生成课堂教学的关键所在。"学生提出问题--教师梳理问题--合作解决重点问题--带着问题走出教室"是互动生成课堂教学的基本流程。本节课让学生根据情境所提供的信息,提出问题,培养学生的问题意识。〕
此环节通过学生合作交流、相互完善,在自主探索中发现平均数、中位数和众数三个统计量的联系与区别。通过几种情况的比较,众数与中位数比较,更能反映这组数据的集中情况,学会找出一组数据的众数,理解众数在统计学上的含义。让学生清楚知道,合理选择统计量应根据数据特点和从具体问题出发。总之,众数这个概念注意加强新旧知识之间的对比和衔接,注意对统计量意义的理解,避免简单的统计量的计算。3、练习巩固第一道练习是通过自己的分析、判断,想一想下列情况用哪一个统计量比较合适?(1)期末考试后班级排名。(2)面包店店主最关心哪种面包销量好。(3)房地产公司经理最关心哪种户型面积的住房买的人最多。因为数学模型可以有效地描述自然现象和社会现象,所以让学生联系生活,理解众数的实际意义,有助于学生对众数的认识。有助于学生根据数据分析的结果作出简单的判断和预测。目的是进一步加深学生对众数的实际意义的理解,感受数学的生活化。
3. 实验(课件演示)每个人每天要喝1400毫升水,也就是1.4升,让同学们猜出猜看能有几杯水,通过实验告诉学生每天至少要喝多少杯水。(课件演示)阅读材料,对学生进行节约用水的思想教育。4. 教师:我们知道了容积和容积单位,也知道了它们与体积单位的关系,现在让我们试一试怎样计算一个容器的容积.出示例5、一种小汽车上的油箱,里面长5dm,宽4dm,高2dm。这个油箱可以装汽油多少升?请一位同学读题.教师:这道题告诉了我们油箱里面的长、宽、高,我们能不能计算出它的容积?(可以.)但是,我们能不能直接算出它的容积是多少升?(不能.)那么应该怎样做?(先算出体积,再把算出的体积单位的名数改写成容积单位的名数.)教师让学生独立做题,教师行间巡视,做完后一步一步地指名让学生说一说是怎么做的,集体订正。
活动三:认识正方体的特征,总结长方体、正方体的关系(1)学生用类比法学习正方体的特征,并揭示出长方体和正方体的内在联系,得出:正方体是特殊的长方体。(2)说说生活中哪些物体是长方体、正方体? 开放的学习方式,以学生的自主学习为中心,让学生通过自身的发展尝试总结,验证,实现知识的“再创造”。比较是认识事物的主要方法之一,特别在几何体教学中,运用比较方法,加强形体间的联系和区别,提高识别能力。同时渗透事物普遍联系和发展变化的辩证唯物主义观。联系生活,体现数学来源于生活,又应用于生活的特点。活动四:学以致用智慧屋,包含判断题、计算题等多种题型的练习,培养学生展开多向思维,是学生能够从不同角度解决问题的基础。这样的练习题,侧重于知识点的落实,巩固新知。
一、说教材体积单位间的进率是人教版第十册数学课本的内容,这部分内容是在学生已经学习了长度单位、面积单位和体积单位间的进率以及掌握了长方体和正方体体积的计算方法的基础上进行教学的。通过复习长度单位米、分米和厘米相邻单位间的进率关系,面积单位平方米、平方分米和平方厘米相邻单位间的进率关系,建立相邻体积单位的进率之间的关系。首先出示了一个的正方体,一个棱长为1分米,再出示一个棱长为10厘米。让学生分别算一算它们的体积。由此发现:1立方分米=1000立方厘米。对于另一组相邻体积单位立方米和立方分米的进率,教材则放手让学生根据前面探索中得到的经验自主进行探索得出1立方米=1000立方分米。最后通过例3和例4的教学,让学生初步尝试应用相邻体积单位间的进率进行不同体积单位的换算。自主探索、合作交流是学生学习数学的重要方式。这堂课我设计了让学生主动参与的学习过程,让学生通过计算、自主探索、合作交流等活动,掌握了数学知识,提高了数学能力。
【设计意图:这是为例4的教学而设计的情境,起过渡作用,使学生明确通分的重要性,同时能促进学生的学习积极性、主动性。】(二)出示学习目标:(1)教学例3第一层:尝试做例3,让学生独立探究,运用旧知识去解决新问题。教师针对这一问题,启发点拨:这两个分数能直接比较大小吗?那么,能不能借助一些学过的知识,设法把这两个分数化为能直接比较的分数,再比较出它们的大小呢?学生:独立探究,小组交流,全班汇报。【设计意图:让学生独立尝试探究,初步感知通分】第二层:看书自学例3,并出示自学 要求:1.书上是如何比较 和大小的?(动笔写一写) 2.什么叫公分母?3.什么叫通分?质疑问难:“通过你们自学例3,还有什么疑问吗?”“找两个分数的公分母,为什么要找4和6的最小公倍数呢?”【设计意图:通过自学理解什么是“公分母”和“通分”,使学生对新概念有一个自我内化的过程】
在动手实践部分,我又设计了“感受”“设计”“欣赏”三个环节。感受环节中,学生亲自动手操作,在计算机上运用练习软件进行轴对称图形的练习:在点子图上画出轴对称图形、画出已给图形的轴对称图形。在平日的课堂教学中也可以做这样的练习,但是局限于黑板、挂图等静态的工具使用,无法用语言精准表达,更改起来也很麻烦,达不到良好的教学效果。可是在计算机上学生可以完全按照自己的意愿进行创作,并会在对比之中巩固对知识的理解。本课的难点是运用平移、旋转和轴对称图形的变换在计算机上设计精美图案。运用传统的教学手段无法形象地呈现过程,在“设计”这个环节中运用多媒体信息技术,形象直观地演示了由一个图形平移、旋转之后得出新图案的过程,让图像媒体与实际操作相结合,激发学生的创作欲望。
在线
客服