人教版高中数学选修3排列与排列数教学设计
-
- 页数:9页
- 字数:约 5854 字
- 大小:2M
- 格式:.docx
- 版本:Office2016及以上版本
- 作者:陈杰出品
排列与排列数教学设计
本节课选自《2019人教A版高中数学选择性必修第三册》,第六章《计数原理》,本节课主本节课主要学习排列与排列数。
排列与组合是在学习了两个计数原理之后,由于排列、组合及二项式定理的研究都是以两个计数原理为基础,同时排列和组合又能进一步简化和优化计数问题。教学的重点是排列的理解,利用计数原理推导排列数公式,难点是运用排列解决实际问题。
课程目标
学科素养
A. 理解并掌握排列、排列数的概念,能用列举法、树状图法列出简单的排列.
B.掌握排列数公式及其变式,并能运用排列数公式熟练地进行相关计算.
C.掌握有限制条件的排列应用题的一些常用方法,并能运用排列的相关知识解一些简单的排列应用题.
1.数学抽象:排列的概念
2.逻辑推理:排列数的性质
3.数学运算:运用排列数解决计数问题
4.数学建模:将计数问题转化为排列问题
重点:理解排列的定义及排列数的计算
难点:运用排列解决计算问题
多媒体
教学过程
教学设计意图
核心素养目标
一、温故知新
两个原理的联系与区别
1.联系:分类加法计数原理和分步乘法计数原理都是解决计数问题最基本、最重要的方法.
2.区别
分类加法计数原理
分步乘法计数原理
区别一
完成一件事共有n类办法,关键词是“分类”
完成一件事共有n个步骤,关键词是“分步”
区别二
每类办法中的每种方法都能独立地完成这件事,它是独立的、一次的且每种方法得到的都是最后结果,只需一种方法就可完成这件事
除最后一步外,其他每步得到的只是中间结果,任何一步都不能独立完成这件事,缺少任何一步也不能完成这件事,只有各个步骤都完成了,才能完成这件事
区别三
各类办法之间是互斥的、并列的、独立的
各步之间是关联的、独立的,“关联”确保不遗漏,“独立”确保不重复
问题1. 从甲、乙、丙三名同学中选出2人参加一项活动,其中1名同学参加上午的活动,另1名同学参加下午的活动.
分析:要完成的一件事是“选出2名同学参加活动,1名参加上午的活动,另1名参加下午的活动”,可以分两个步骤:
第1步,确定上午的同学,从3人中任选1人,有3种选法;
第2步,确定下午的同学,只能从剩下的2人中去选,有2种选法.
根据分步乘法计数原理,不同的选法种数为32=6.
问题如果把上面问题中被取出的对象叫做元素,则问题可叙述为:从3个不同的元素中任意取出2个,并按一定的顺序排成一列,共有多少种不同的排列方法?
问题2. 从1,2,3,4这4个数字中选出3个能构成多少个无重复数字的三位数?
分析:从4个数中每次取出三个按“百位、十位、个位” 的顺序排成一列,就得到一个三位数.因此有多少种不同的排列方法就有多少个不同的三位数,可以分三个步骤解决:
第1步,确定百位上的数字,从1、2、3、4这4个数中任取一个,有4种方法;第2步,确定十位上的数字,只能从余下的3个数字中取,有3种方法;第3步,确定个位上的数字,只能从余下的2个数字中取,有2种方法;根据分步乘法计数原理,从1、2、3、4这4个不同的数字中,每次取出3个数字,按百位、十位、个位的顺序排成一列,不同的排列方法为432=24
因而共可得到24个不同的三位数,如图所示
同样,问题2可以归结为:
从4个不同的元素中任意取出3个,并按一定的顺序排成一列,共有多少种不同的排列方法?所有不同的排列是
不同的排列方法为432=24
上述问题1,2的共同特点是什么?你能将它们推广到一般情形吗?
一、排列的相关概念
1.排列:一般地,从n个不同元素中取出m(m≤n)个元素,并按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.
2.相同排列:两个排列的元素完全相同,且元素的排列顺序也相同.
名师点析理解排列应注意的问题
(1)排列的定义中包括两个基本内容,一是“取出元素”,二是“按一定顺序排列”.
(2)定义中的“一定顺序”说明了排列的本质:有序.
1.下列问题中:
①10本不同的书分给10名同学,每人一本;
②10位同学互通一次电话;
③10位同学互通一封信;
④10个没有任何三点共线的点构成的线段.
属于排列的有( )
A.1个 B.2个 C.3个 D.4个
解析:由排列的定义可知①③是排列,②④不是排列.
答案:B
二、典例解析
例1. 某省中学足球队赛预选赛每组有6支队,每支队都要与同组的其他各队在主、客场分别比赛1场,那么每组共进行多少场比赛?
分析:每组任意2支队之间进行的1场比赛,可以看作是从该组6支队中选取2支,按“主队、客队”的顺序排成的一个排列.
解:可以先从这6支队中选1支为主队,然后从剩下的5支队中选1支为客队.按分步乘法计数原理,每组进行的比赛场数为
65=30.
例2. (1)一张餐桌上有5盘不同的菜,甲、乙、丙3名同学每人从中各取1盘菜,共有多少种不同的取法?
(2)学校食堂的一个窗口共卖5种菜,甲、乙、丙3名同学每人从中选一种,共有多少种不同的选法?
分析:3名同学每人从5盘不同的菜中取1盘菜,可看作是从这5盘菜中任取3盘,放在3个位置(给3名同学)的一个排列;而3名同学每人从食堂窗口的5种菜中选1种,每人都有5种选法,不能看成一个排列.
解:(1)可以先从这5盘菜中取1盘给同学甲,然后从剩下的4盘菜中取1盘给同学乙,最后从剩下的3盘菜中取1盘给同学丙.按分步乘法计数原理,不同的取法种数为
543=60.
(2)可以先让同学甲从5种菜中选1种,有5种选法;再让同学乙从5种菜中选1种,也有5种选法;
最后让同学丙从5种菜中选1种,同样有5种选法.
按分步乘法计数原理,不同的取法种数为
555=125.
二、排列数与排列数公式
1.排列数的定义:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做
从n个不同元素中取出m个元素的排列数,用符号表示.
2.排列数公式:=n(n-1)(n-2)…(n-m+1)=,这里m,n∈N*,并且m≤n.
3.全排列和阶乘:n个不同元素全部取出的一个排列,叫做n个元素的一个全排列.这时,排列数公式中m=n,即有=n(n-1)(n-2)…321.也就是说,将n个不同的元素全部取出的排列数,等于正整数1到n的连乘积.正整数1到n的连乘积,叫做n的阶乘,用n!表示.于是,n个元素的全排列数公式可以写成=n!.另外,我们规定,0!=1.
问题3. 你认为“排列”和“排列数”是同一个概念吗?它们有什么区别?
“排列”与“排列数”是两个不同的概念,一个排列是指“从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列”,它不是一个数,而是具体的一件事.“排列数”是指“从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数”,它是一个数.
例4.用0~9这10个数字,可以组成多少个没有重复数字的三位数?
分析:在0~9这10个数字中,因为0不能在百位上,而其他9个数字可以在任意数位上,因此0是一个特殊的元素。一般地,我们可以从特殊元素的位置入手来考虑问题。
解法1:由于三位数的百位上的数字不能是0,所以可以分两步完成:
第1步,确定百位上的数字可以从1~9这9个数字中取出1个,有种取法;第2步,确定十位和个位上的数字,可以从剩下的9个数中取2个, 有种取法;如图
根据分步乘法计数原理,所求的三位数的个数为 998648.
解法2:如图,符合条件的三位数可以分成三类:第1类,每一位数字都不是0的三位数,可以从1~9这9个数字中取出3个,有种取法;第2类,个位上的数字是0的三位数,可以从剩下的9个数中取出2个放在百位和十位,有种取法;第3类,十位上的数字是0的三位数,可以从剩下的9个数字中取出2个放在百位和个位,有种取法.根据分类加法计数原理,所求三位数的个数为=987+98+98=648.
解法3:从0~9这10个数字中选取3个的排列数为,其中0在百位上的排列数为,它们的差就是用这10个数组成的没有重复数字的三位数的个数,
即所求三位数的个数为109898648.
1.此类题目从不同的视角可以选择不同的方法,我们用各种方法解决这个题的目的是:希望通过对本题的感悟,能掌握更多的解决这类问题的方法.
2.元素分析法最基本,位置分析法对重要元素区别对待,间接法对对立面比较容易求解的题目特别实用.
跟踪训练有语文、数学、英语、物理、化学、生物6门课程,从中选4门安排在上午的4节课中,其中化学不排在第四节,共有多少种不同的安排方法?
通过引导学生回顾计数原理,进一步比较分析加深对两个计数原理得理解。
通过具体问题,分析、比较、归纳出对排列的概念。发展学生数学运算,数学抽象和数学建模的核心素养。
在典例分析和练习中让学生熟悉排列和排列数的概念,进而灵活运用排列数解决问题。发展学生逻辑推理,直观想象、数学抽象和数学运算的核心素养。
三、达标检测
1.从5本不同的书中选两本送给2名同学,每人一本,则不同的送书方法的种数为( )
A.5 B.10 C.20 D.60
解析:此问题相当于从5个不同元素中取出2个元素的排列数,即共有 =20(种)不同的送书方法.
答案:C
2.设m∈N*,且m<15,则=( )
A.(20-m)(21-m)(22-m)(23-m)(24-m)(25-m)
B.(20-m)(19-m)(18-m)(17-m)(16-m)
C.(20-m)(19-m)(18-m)(17-m)(16-m)(15-m)
D.(19-m)(18-m)(17-m)(16-m)(15-m)
解析: 是指从20-m开始依次连续的6个数相乘,即(20-m)(19-m)(18-m)(17-m)(16-m)(15-m).
答案:C
3.某次演出共有6位演员参加,规定甲只能排在第一个或最后一个出场,乙和丙必须排在相邻的顺序出场,不同的演出顺序共有( )
A.24种 B.144种 C.48种 D.96种
解析:第1步,先安排甲有种不同的演出顺序;第2步,安排乙和丙有种不同的演出顺序;第3步,安排剩余的三个演员有种不同的演出顺序.根据分步计数原理,共有=96(种)不同的演出顺序.故选D.
答案:D
4.有8种不同的菜种,任选4种种在不同土质的4块地里,有 种不同的种法.
解析:将4块不同土质的地看作4个不同的位置,从8种不同的菜种中任选4种种在4块不同土质的地里,则本题即为从8个不同元素中任选4个元素的排列问题,所以不同的种法共有 =8765=1 680(种).
答案:1 680
5.用1、2、3、4、5、6、7这7个数字组成没有重复数字的四位数.
(1)这些四位数中偶数有多少个?能被5整除的有多少个?
(2)这些四位数中大于6 500的有多少个?
解:(1)偶数的个位数只能是2、4、6,有种排法,其他位上有种排法,由分步乘法计数原理,知共有四位偶数=360(个);能被5整除的数个位必须是5,故有=120(个).
(2)最高位上是7时大于6 500,有种,最高位上是6时,百位上只能是7或5,故有2种.由分类加法计数原理知,这些四位数中大于6 500的共有+2=160(个).
通过练习巩固本节所学知识,通过学生解决问题,发展学生的数学运算、逻辑推理、直观想象、数学建模的核心素养。
您可能喜欢的文档
查看更多人教版高中数学选修3组合与组合数教学设计
- 页数:9页
- |大小:280.86KB
【高教版】中职数学拓展模块:3.1《排列与组合》优秀教学设计
- 页数:16页
- |大小:172.89KB
人教版高中数学选修3全概率公式教学设计
- 页数:9页
- |大小:957.21KB
人教版高中数学选修3超几何分布教学设计
- 页数:8页
- |大小:737.28KB
人教版高中数学选修3二项分布教学设计
- 页数:10页
- |大小:490.51KB
人教版高中数学选修3二项式定理教学设计
- 页数:10页
- |大小:490.51KB
人教版高中数学选修3条件概率教学设计
- 页数:9页
- |大小:363.12KB
热门课件教案
XX区文旅体局2023年工作总结 及2024年工作安排
- 页数:8页
- |大小:32.41KB
- 课件教案
XX区民政局党支部开展主题教育工作情况总结报告
- 页数:3页
- |大小:24.47KB
- 课件教案
交通运输局在巡回指导组主题教育阶段性工作总结推进会上的汇报发言
- 页数:4页
- |大小:33.41KB
- 课件教案
2023年区实施乡村振兴战略工作总结
- 页数:6页
- |大小:27.90KB
- 课件教案
关于2024年上半年工作总结和下半年工作计划
- 页数:5页
- |大小:29.72KB
- 课件教案
县综合行政执法局2023年工作总结和2024年工作计划
- 页数:8页
- |大小:28.37KB
- 课件教案
今日更新
5月份主题教育工作情况总结汇报
- 页数:3页
- |大小:136.87KB
××县招商局2024年上半年工作总结
- 页数:12页
- |大小:142.54KB
×××公安局机关党委上半年党建工作总结
- 页数:7页
- |大小:186.25KB
《2019—2024年全国党政领导班子建设规划纲要》实施情况的工作总结3800字
- 页数:6页
- |大小:29.16KB
“转观念、勇担当、新征程、创一流”主题教育活动阶段性工作总结
- 页数:3页
- |大小:22.76KB
“四零”承诺服务创建工作总结
- 页数:5页
- |大小:39.83KB