人教A版高中数学必修一奇偶性教学设计(2)
-
- 页数:7页
- 字数:约 4091 字
- 大小:179.77KB
- 格式:.docx
- 版本:Office2016及以上版本
- 作者:天皓PPTER
奇偶性教学设计(2)
《奇偶性》内容选自人教版A版第一册第三章第三节第二课时;函数奇偶性是研究函数的一个重要策略,因此奇偶性成为函数的重要性质之一,它的研究也为今后指对函数、幂函数、三角函数的性质等后续内容的深入起着铺垫的作用.
课程目标
1、理解函数的奇偶性及其几何意义;
2、学会运用函数图象理解和研究函数的性质;
3、学会判断函数的奇偶性.
数学学科素养
1.数学抽象:用数学语言表示函数奇偶性;
2.逻辑推理:证明函数奇偶性;
3.数学运算:运用函数奇偶性求参数;
4.数据分析:利用图像求奇偶函数;
5.数学建模:在具体问题情境中,运用数形结合思想,利用奇偶性解决实际问题。
重点:函数奇偶性概念的形成和函数奇偶性的判断;
难点:函数奇偶性概念的探究与理解.
教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
一、 情景导入
前面我们用符号语言准确地描述了函数图象在定义域的某个区间上“上升”(或“下降”)的性质.下面继续研究函数的其他性质.
画出并观察函数的图像,你能发现这两个函数图像
有什么共同特征码?
要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
二、 预习课本,引入新课
阅读课本82-84页,思考并完成以下问题
1.偶函数、奇函数的概念是什么?
2.奇偶函数各自的特点是?
要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、 新知探究
1.奇函数、偶函数
(1)偶函数(even function)
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.
(2)奇函数(odd function)
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.
2、奇偶函数的特点
(1)具有奇偶性的函数的定义域具有对称性,即关于坐标原点对称,如果一个函数的定义域关于坐标原点不对称,就不具有奇偶性.因此定义域关于原点对称是函数存在奇偶性的一个必要条件。
(2)具有奇偶性的函数的图象具有对称性.偶函数的图象关于轴对称,奇函数的图象关于坐标原点对称;反之,如果一个函数的图象关于轴对称,那么,这个函数是偶函数,如果一个函数的图象关于坐标原点对称,那么,这个函数是奇函数.
(3)由于奇函数和偶函数的对称性质,我们在研究函数时,只要知道一半定义域上的图象和性质,就可以得到另一半定义域上的图象和性质.
(4)偶函数: ,
奇函数: ;
(5)根据奇偶性可将函数分为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。
(6)已知函数f(x)是奇函数,且f(0)有定义,则f(0)=0。
四、典例分析、举一反三
题型一 判断函数奇偶性
例1(课本P84例6):判断下列函数的奇偶性
(1) (2) (3) (4)
【答案】(1)f(x)为偶函数 (2)f(x)为偶函数
(3)f(x)为奇函数 (4)f(x)为偶函数
【解析】
(1) 的定义域为R,关于原点对称。且
所以 为偶函数.
(2) 的定义域为R,关于原点对称。且 所以 为偶函数.
(3) 的定义域为 ,关于原点对称.
且 所以 为奇函数.
(4) 的定义域为 ,关于原点对称.且 所以 为偶函数.
解题技巧:(利用定义判断函数奇偶性的格式步骤:)
1.定义法
(1). 首先确定函数的定义域,并判断其定义域是否关于原点对称;
(2). 确定f(-x)与f(x)的关系;
(3).作出相应结论:
若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;
若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.
2.图像法
跟踪训练一
1.判断下列函数的奇偶性:
(1)f(x)=2-|x|;
(2)f(x)= + ;
(3)f(x)=;
(4)f(x)=
【答案】(1)f(x)为偶函数 (2)f(x)既是奇函数又是偶函数
(3)f(x)是非奇非偶函数 (4)f(x)为偶函数
【解析】 (1)∵函数f(x)的定义域为R,关于原点对称,
又f(-x)=2-|-x|=2-|x|=f(x),
∴f(x)为偶函数.
(2)∵函数f(x)的定义域为{-1,1},关于原点对称,且f(x)=0,
又∵f(-x)=-f(x),f(-x)=f(x),
∴f(x)既是奇函数又是偶函数.
(3)∵函数f(x)的定义域为{x|x≠1},不关于原点对称,
∴f(x)是非奇非偶函数.
(4)f(x)的定义域是(-∞,0)∪(0,+∞),关于原点对称.
当x>0时,-x<0,f(-x)=1-(-x)=1+x=f(x);
当x<0时,-x>0,f(-x)=1+(-x)=1-x=f(x).
综上可知,对于x∈(-∞,0)∪(0,+∞),都有f(-x)=f(x),f(x)为偶函数.
题型二 利用函数的奇偶性求解析式
例2 已知f(x)为R上的奇函数,当x>0时,f(x)=-2+3x+1,
(1)求f(-1);
(2)求f(x)的解析式.
【答案】(1)-2 (2)f(x)=
【解析】(1)因为函数f(x)为奇函数,
所以f(-1)=-f(1)=-(-212+31+1)=-2.
(2)当x<0时,-x>0,则
f(-x)=-2+3(-x)+1=-2-3x+1.
由于f(x)是奇函数,则f(x)=-f(-x),
所以f(x)=2+3x-1.当x=0时,f(-0)=-f(0),则f(0)=-f(0),即f(0)=0.
所以f(x)的解析式为f(x)=
解题技巧:(求函数解析式的注意事项))
1.已知当x∈(a,b)时,f(x)=φ(x),求当x∈(-b,-a)时f(x)的解析式.
若f(x)为奇函数,则当x∈(-b,-a)时,
f(x)=-f(-x)=-φ(-x);
若f(x)为偶函数,则当x∈(-b,-a)时,
f(x)=f(-x)=φ(-x).
2.若函数f(x)的定义域内含0且为奇函数,则必有f(0)=0,不能漏掉.
跟踪训练二
1.若f(x)是定义在R上的奇函数,当x>0时,f(x)=x2-2x+3,求f(x)的解析式.
【答案】f(x)=
【解析】当x<0时,-x>0,
f(-x)=(-x)2-2(-x)+3=x2+2x+3,
由于f(x)是奇函数,故f(x)=-f(-x),
所以f(x)=-x2-2x-3.
即当x<0时,f(x)=-x2-2x-3.
故f(x)=
题型三 利用函数的奇偶性求参
例3 (1)若函数f(x)=a+bx+3a+b是偶函数,定义域为[a-1,2a],则a=________,b=________;
您可能喜欢的文档
查看更多人教A版高中数学必修一对数的概念教学设计(2)
- 页数:5页
- |大小:110.37KB
人教A版高中数学必修一对数的运算教学设计(2)
- 页数:5页
- |大小:143.31KB
人教A版高中数学必修一函数的概念教学设计(2)
- 页数:9页
- |大小:196.78KB
人教A版高中数学必修一基本不等式教学设计(2)
- 页数:6页
- |大小:202.88KB
人教A版高中数学必修一弧度制教学设计(2)
- 页数:7页
- |大小:242.77KB
人教A版高中数学必修一集合的概念教学设计(2)
- 页数:9页
- |大小:160.49KB
人教A版高中数学必修一诱导公式教学设计(2)
- 页数:7页
- |大小:124.28KB
热门课件教案
交通运输局在巡回指导组主题教育阶段性工作总结推进会上的汇报发言
- 页数:4页
- |大小:33.41KB
- 课件教案
2023年区实施乡村振兴战略工作总结
- 页数:6页
- |大小:27.90KB
- 课件教案
县综合行政执法局2023年工作总结和2024年工作计划
- 页数:8页
- |大小:28.37KB
- 课件教案
XX区民政局党支部开展主题教育工作情况总结报告
- 页数:3页
- |大小:24.47KB
- 课件教案
公司2024第一季度意识形态工作联席会议总结
- 页数:6页
- |大小:141.67KB
- 课件教案
XX区文旅体局2023年工作总结 及2024年工作安排
- 页数:8页
- |大小:32.41KB
- 课件教案
今日更新
5月份主题教育工作情况总结汇报
- 页数:3页
- |大小:136.87KB
××县招商局2024年上半年工作总结
- 页数:12页
- |大小:142.54KB
×××公安局机关党委上半年党建工作总结
- 页数:7页
- |大小:186.25KB
《2019—2024年全国党政领导班子建设规划纲要》实施情况的工作总结3800字
- 页数:6页
- |大小:29.16KB
“转观念、勇担当、新征程、创一流”主题教育活动阶段性工作总结
- 页数:3页
- |大小:22.76KB
“四零”承诺服务创建工作总结
- 页数:5页
- |大小:39.83KB