教学重点:1.比较分析地理环境差异对区域发展的影响2.分析区域不同发展阶段地理环境的影响教学难点:1.区域的特征2.以两个区域为例,比较分析地理环境差异对区域发展的影响教具准备:有关挂图等、自制图表等教学方法:比较法、案例分析法、图示法等教学过程:一、区域1.概念:区域是地球表面的空间单位,它是人们在地理差异的基础上,按一定的指标和方法划分出来的。2.特征:(1)区域具有一定的区位特征:不同的区域,自然环境有差异,人类活动也有差异。同一区域,区域内部的特定性质相对一致,如湿润区的多年平均降水量都在800毫米以上。但自然环境对人类活动的影响随着其他条件的变化而不同。(2)具有一定的面积、形状和边界。①有的区域的边界是明 确的,如行政区;②有的区域的边界具有过渡性质,如干湿地区。
地质年代可分为相对年代和绝 对年龄(或同位素年龄)两种。相对地质年代是指岩石和地层之间的相对新老关系和它们的时代顺序。地质学家和古生物学家根据地层自然形成的先后顺序,将地层分为5代12纪。即早期的太古代和元古代(元古代 在中国含有1个震旦纪),以后的古生代、中生代和新生代。古生代分为寒武纪、奥陶纪、志留纪、泥盆纪、石炭纪和二叠纪,共7个纪;中生代分为三叠纪、侏罗纪和白垩纪,共3个纪;新生代只有第三纪、第四纪两个纪。在各个不同时期的地层里,大都保存有古代动、植物的标准化石。各类动、植物化石出现的早晚是有一定顺序的,越是低等的,出现得越早,越是高等的,出现得越晚。绝对年龄是根据测出岩石中某种放射性元素及其蜕变产物的含量而计算出岩石的生成后距今的实际年 数。越是老的岩石,地层距今的年数越长。
三、影响区域环境说明:环境是旅游业的基础,旅游对环境保护具有促进作用。世界上很多国家在发展旅游业的同时,都很重视对旅游资源和环境的保护,以实现旅游业的可持续发展。旅游业的发展对环境也有消极作用,如果旅游与环境的关系不处理好,环境也会朝着恶化的方向发展。图1.10古建修复图1.10对比显示古建筑修复前后景观的变化,说明旅游业的发展有利于文物古迹和古建筑的保护。讨论:1.列举旅游业发展有利于环境的措施。提示:建立各种自然保护区、申报历史文物保护单位等措施都有利于保护旅游环境。2.举例说明旅游对环境的消极作用。提示:旅游对环境的消极作用主要表现在:由于对旅游资源开发建设不当或失误,使生态环境恶化;由于大量游客的涌入,排放的各类废弃物超过了环境自净能力而造成环境污染;由于大量游客的接触或不文明行为引起的对风景、文物的破坏等。
三、作出速度-时间图像(v-t图像)1、确定运动规律最好办法是作v-t图像,这样能更好地显现物体的运动规律。2、x y x1 x2 y2 y1 0讨论如何在本次实验中描点、连线。(以时间t为横轴,速度v为纵轴,建立坐标系,选择合适的标度,把刚才所填表格中的各点在速度-时间坐标系中描出。注意观察和思考你所描画的这些点的分布规律,你会发现这些点大致落在同一条直线上,所以不能用折线连接,而用一根直线连接,还要注意连线两侧的点数要大致相同。)3、若出现了个别明显偏离绝大部分点所在直线的点,该如何处理?(对于个别明显偏离绝大部分点所在直线的点,我们可以认为是测量误差过大、是测量中出现差错所致,将它视为无效点,但是在图像当中仍应该保留,因为我们要尊重实验事实,这毕竟是我们的第一手资料,是原始数据。)4、怎样根据所画的v-t图像求加速度?(从所画的图像中取两个点,找到它们的纵、横坐标(t1,v1)、(t2,v2),然后代入公式,求得加速度,也就是直线的斜率。在平面直角坐标系中,直线的斜率
3、若出现了个别明显偏离绝大部分点所在直线的点,该如何处理?(对于个别明显偏离绝大部分点所在直线的点,我们可以认为是测量误差过大、是测量中出现差错所致,将它视为无效点,但是在图像当中仍应该保留,因为我们要尊重实验事实,这毕竟是我们的第一手资料,是原始数据。)4、怎样根据所画的v-t图像求加速度?(从所画的图像中取两个点,找到它们的纵、横坐标(t1,v1)、(t2,v2),然后代入公式,求得加速度,也就是直线的斜率。在平面直角坐标系中,直线的斜率四、实践与拓展例1、在探究小车速度随时间变化规律的实验中,得到一条记录小车运动情况的纸带,如图所示。图中A、B、C、D、E为相邻的计数点,相邻计数点的时间间隔为T=0.1s。⑴根据纸带上的数据,计算B、C、D各点的数据,填入表中。
(三)合作交流能力提升教师:刚才我们通过实验了解了小车的速度是怎样随时间变化的,但实验中有一定的误差,请同学们讨论并说出可能存在哪些误差,造成误差的原因是什么?(每个实验小组的同学之间进行热烈的讨论)学生:测量出现误差。因为点间距离太小,测量长度时容易产生误差。教师:如何减小这个误差呢?学生:如果测量较长的距离,误差应该小一些。教师:应该采取什么办法?学生:应该取几个点之间的距离作为一个测量长度。教师:好,这就是常用的取“计数点”的方法。我们应该在纸带上每隔几个计时点取作一个计数点,进行编号。分别标为:0、1、2、3……,测各计数点到“0”的距离。以减小测量误差。教师:还有补充吗?学生1:我在坐标系中描点画的图象只集中在坐标原定附近,两条图象没有明显的分开。学生2:描出的几个点不严格的分布在一条直线上,还能画直线吗?
1.看过了视频,接下来由各个小组与我们分享他们在课下准备的核心价值观小品,每组表演时,剩下的小组猜测表演的是哪一个核心价值观并在活动评价单上进行评分。2.教师总结:“精神文明建设使人们的生活更美好”教师引导学生:精神文明建设搞好了,人心凝聚,精神振奋,各项事业才会全面兴盛。活动二:走进新时代,怀揣中国梦。1.播放“中国梦”优秀少儿演讲视频。2.阅读课本,交流感想。活动三:争做时代好少年1.回顾各小组的表演,把其中所有的不良习惯和闪光举动逐个挑出来再次强调。2.小组交流班级内部常见的坏习惯。教师总结。总结延伸:通过本节课的学习了解到青少儿应积极投身于社会主义精神文明建设的伟大实践中去,做新时代的好少,做新时期中国先进文化的传播者。
阅读教材第88、89页内容,思考︰(1)"新四大发明"出现的主要原因是什么?(2)科技创新与国家发展、人民生活有什么关系?(3)改革创新对于一个国家和民族有什么重要作用?提示︰(1)改革创新的实践以及"科教兴国"战略的落实。(2)促进了经济领域的飞速发展,也促使科技、文化、生活等各个领域取得辉煌成就,不断推动社会的进步和国家的富强。只有在不断改革创新中,一个民族的凝聚力才能不断增强,一个国家的生机活力才能不断焕发。弘扬以改革创新为核心的时代精神,努力投身创新实践,发展才会有新思路,改革才会有新突破,我们才能开创更加美好的未来。第三个环节:课堂小结改革创新是时代的最强音。只有在不断改革创新中,一个民族的凝聚力才能不断增强,一个国家的生机活力才能不断焕发。
讨论交流:正是靠着这种民族精神,我国建成了一个个大油田。到1965年,中国的石油基本实现自给。5、补充资料1964年10月16日和1967年6月17日,中国西北罗布泊大漠中,升起了蘑菇状的烟云。我国相继成功爆炸了第一颗原子弹和第一颗氢弹,成为继美国、苏联、英国之后第四个同时拥有原子弹和核弹的国家。中国从此拥有了保家卫国、捍卫和平的核力量。交流邓稼先故事1950年8月,邓稼先在美国获得博士学位九天后,便谢绝了恩师和同校好友的挽留,毅然决定回国。同年10月,邓稼先来到中国科学院近代物理研究所任研究员。在北京外事部门的招待会上,有人问他带了什么回来。他说:“带了几双眼下中国还不能生产的尼龙袜子送给父亲,还带了一脑袋关于原子核的知识。”此后的八年间,他进行了中国原子核理论的研究。
(1)这个故事的什么地方最令你感动?(2)你从这个故事中看到邓稼先怎样的奉献精神?1950年,新中国诞生的消息传到了大洋彼岸,年仅 26岁的邓稼先刚刚取得学位,毅然放弃了在美国优越的生活和工作条件,冲破重重阻挠回到祖国。1958年,他接受国家最高机密任务秘密研制原子弹。从此,邓稼先隐姓埋名28年,连家人也不知他的去向,一直奋战在我国西部荒漠中的核基地。在一次航投试验中,原子弹意外摔裂。邓稼先明知危险,却一个人跑上前去亲自察看,导致身体邓稼先受到核辐射的致命伤害。他忘我地工作,和许多著名科学家同心协力,攻破一道又一道科学难关,终于为祖国点燃了那饱含着我国科学家们智慧和力量的神奇之火。1986年7月29日,他临终前留下的话仍是如何在尖端武器方面努力,并叮嘱:“不要让人家把我们落得太远……”4.你还知道哪些为新中国作出贡献的科学家?你能说说他们的故事吗?(1)华罗庚:梁园虽好,非久居之地1950年3 月,来自美国的“克利夫兰总统号”邮轮航抵香港,略作停留,进行补给。
知识与技能目标:1. 能正确说出三元一次方程(组)及其解的概念,能正确判别一组数是否是三元一次方程(组)的解;2. 会根据实际问题列出简单的三元一次方程或三元一次方程组。过程与方法目标:1. 通过加深对概念的理解,提高对“元”和“次”的认识。2. 能够逐步培养类比分析和归纳概括的能力,了解辩证统一的思想。情感态度与价值观目标:通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。
【教学目标】知识目标:⑴ 理解任意角的三角函数的定义及定义域;⑵ 理解三角函数在各象限的正负号;⑶掌握界限角的三角函数值.能力目标:⑴会利用定义求任意角的三角函数值;⑵会判断任意角三角函数的正负号;⑶培养学生的观察能力.【教学重点】⑴ 任意角的三角函数的概念;⑵ 三角函数在各象限的符号;⑶特殊角的三角函数值.【教学难点】任意角的三角函数值符号的确定.【教学设计】(1)在知识回顾中推广得到新知识;(2)数形结合探求三角函数的定义域;(3)利用定义认识各象限角三角函数的正负号;(4)数形结合认识界限角的三角函数值;(5)问题引领,师生互动.在问题的思考和交流中,提升能力.
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.1两角和与差的正弦公式与余弦公式. *创设情境 兴趣导入 问题 两角和的余弦公式内容是什么? 两角和的余弦公式内容是什么? 介绍 播放 课件 质疑 了解 观看 课件 思考 引导 启发学生得出结果 0 5*动脑思考 探索新知 由同角三角函数关系,知 , 当时,得到 (1.5) 利用诱导公式可以得到 (1.6) 注意 在两角和与差的正切公式中,的取值应使式子的左右两端都有意义. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 启发引导学生发现解决问题的方法 15*巩固知识 典型例题 例7求的值, 分析 可以将75°角看作30°角与45°角的和. 解 . 例8 求下列各式的值 (1);(2). 分析 (1)题可以逆用公式(1.3);(2)题可以利用进行转换. 解(1) ; (2) . 【小提示】 例4(2)中,将1写成,从而使得三角式可以应用公式.要注意应用这种变形方法来解决问题. 引领 讲解 说明 引领 分析 说明 启发 引导 启发 分析 观察 思考 主动 求解 观察 思考 理解 口答 注意 观察 学生 是否 理解 知识 点 学生 自我 发现 归纳 25
教 学 过 程教师 行为学生 行为教学 意图 *揭示课题 8.3 两条直线的位置关系(一) *创设情境 兴趣导入 【知识回顾】 我们知道,平面内两条直线的位置关系有三种:平行、相交、重合.并且知道,两条直线都与第三条直线相交时,“同位角相等”是“这两条直线平行”的充要条件. 【问题】 两条直线平行,它们的斜率之间存在什么联系呢? 介绍 质疑 引导 分析 了解 思考 启发 学生思考*动脑思考 探索新知 【新知识】 当两条直线、的斜率都存在且都不为0时(如图8-11(1)),如果直线平行于直线,那么这两条直线与x轴相交的同位角相等,即直线的倾角相等,故两条直线的斜率相等;反过来,如果直线的斜率相等,那么这两条直线的倾角相等,即两条直线与x轴相交的同位角相等,故两直线平行. 当直线、的斜率都是0时(如图8-11(2)),两条直线都与x轴平行,所以//. 当两条直线、的斜率都不存在时(如图8-11(3)),直线与直线都与x轴垂直,所以直线// 直线. 显然,当直线、的斜率都存在但不相等或一条直线的斜率存在而另一条直线的斜率不存在时,两条直线相交. 由上面的讨论知,当直线、的斜率都存在时,设,,则 两个方程的系数关系两条直线的位置关系相交平行重合 当两条直线的斜率都存在时,就可以利用两条直线的斜率及直线在y轴上的截距,来判断两直线的位置关系. 判断两条直线平行的一般步骤是: (1) 判断两条直线的斜率是否存在,若都不存在,则平行;若只有一个不存在,则相交. (2) 若两条直线的斜率都存在,将它们都化成斜截式方程,若斜率不相等,则相交; (3) 若斜率相等,比较两条直线的纵截距,相等则重合,不相等则平行. 讲解 说明 引领 分析 仔细 分析 讲解 关键 词语 思考 理解 思考 理解 带领 学生 分析 引导 式启 发学 生得 出结 果
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 9.2 直线与直线、直线与平面、平面与平面平行的判定与性质 *创设情境 兴趣导入 观察图9?13所示的正方体,可以发现:棱与所在的直线,既不相交又不平行,它们不同在任何一个平面内. 图9?13 观察教室中的物体,你能否抽象出这种位置关系的两条直线? 介绍 质疑 引导 分析 了解 思考 启发 学生思考 0 2*动脑思考 探索新知 在同一个平面内的直线,叫做共面直线,平行或相交的两条直线都是共面直线.不同在任何一个平面内的两条直线叫做异面直线.图9-13所示的正方体中,直线与直线就是两条异面直线. 这样,空间两条直线就有三种位置关系:平行、相交、异面. 将两支铅笔平放到桌面上(如图9?14),抬起一支铅笔的一端(如D端),发现此时两支铅笔所在的直线异面. 桌子 B A C D 两支铅笔 图9 ?14(请画出实物图) 受实验的启发,我们可以利用平面做衬托,画出表示两条异面直线的图形(如图9 ?15). (1) (2) 图9?15 利用铅笔和书本,演示图9?15(2)的异面直线位置关系. 讲解 说明 引领 分析 仔细 分析 关键 语句 思考 理解 记忆 带领 学生 分析 5
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 9.3 直线与直线、直线与平面、平面与平面所成的角 *创设情境 兴趣导入 在图9?30所示的长方体中,直线和直线是异面直线,度量和,发现它们是相等的. 如果在直线上任选一点P,过点P分别作与直线和直线平行的直线,那么它们所成的角是否与相等? 图9?30 介绍 质疑 引导 分析 了解 思考 启发 学生思考 0 5*动脑思考 探索新知 我们知道,两条相交直线的夹角是这两条直线相交所成的最小的正角. 经过空间任意一点分别作与两条异面直线平行的直线,这两条相交直线的夹角叫做两条异面直线所成的角. 如图9?31(1)所示,∥、∥,则与的夹角就是异面直线与所成的角.为了简便,经常取一条直线与过另一条直线的平面的交点作为点(如图9?31(2)) (1) 图9-31(2) 讲解 说明 引领 分析 仔细 分析 关键 语句 思考 理解 记忆 带领 学生 分析 12*巩固知识 典型例题 例1 如图9?32所示的长方体中,,求下列异面直线所成的角的度数: (1) 与; (2) 与 . 解 (1)因为 ∥,所以为异面直线与所成的角.即所求角为. (2)因为∥,所以为异面直线与所成的角. 在直角△中 ,, 所以 , 即所求的角为. 说明 强调 引领 讲解 说明 观察 思考 主动 求解 通过例题进一步领会 17
在线
客服