探究点二:选用适当的方法解一元二次方程用适当的方法解方程:(1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可变形为3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)将方程化为一般形式,得3x2-4x-1=0.这里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)将方程化为一般形式,得5x2-4x+1=0.这里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程没有实数根.方法总结:解一元二次方程时,若没有具体的要求,应尽量选择最简便的方法去解,能用因式分解法或直接开平方法的选用因式分解法或直接开平方法;若不能用上述方法,可用公式法求解.在用公式法时,要先计算b2-4ac的值,若b2-4ac<0,则判断原方程没有实数根.没有特殊要求时,一般不用配方法.
三、课后自测:1、如图,A、B、C、D为矩形的四个顶点,AB=16cm,BC= 6cm,动点P、 Q分别从点A、C出发,点P以3cm/s的速度向点B移动,一直到达B为止;点Q以2cm/s的速度向点D移动。经过多长时间P、Q两点之间的距离是10cm?2、如图,在Rt △ABC中,AB=BC=12cm,点D从点A开始沿边AB以2cm/s的速度向点B移动,移 动过程中始终保持DE∥BC,DF∥AC,问点D出发几秒后四边形DFCE的面积为20cm2?3、如图所示,人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处的位置 O点的正北方向10海里外的A点有一涉嫌走私船只正以24海里/时的速度向正东方向航行,为迅速实施检查,巡逻艇调整好航向,以26海里/时的速度追赶。在涉嫌船只不改变航向和航速的前提下,问需要几小时才 能追上( 点B为追上时的位置)?
5.一件上衣原价每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次的2 倍,结果以每件240元的价格迅速出售,求每次降价的百分率是多少?6.水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折相同,每次打了几折?(精确到0.1折)7.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.有24名家庭贫困学生免费供应.经核算,这24套演出服的成本正好是原定生产这批演出服的利润.这批演出服共生产了多少套?8、某商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售200件。请你帮助分析,销售单价是多少时 ,可以获利9100元?
一、教学目标1.初步掌握“两边成比例且夹角相等的两个三角形相似”的判定方法.2.经历两个三角形相似的探索过程,体验用类比、实验操作、分析归纳得出数学结论的过程;通过画图、度量等操作,培养学生获得数学猜想的经验,激发学生探索知识的兴趣,体验数学活动充满着探索性和创造性.3.能够运用三角形相似的条件解决简单的问题. 二、重点、难点1. 重点:掌握判定方法,会运用判定方法判定两个三角形相似.2. 难点:(1)三角形相似的条件归纳、证明;(2)会准确的运用两个三角形相似的条件来判定三角形是否相似.3. 难点的突破方法判定方法2一定要注意区别“夹角相等” 的条件,如果对应相等的角不是两条边的夹角,这两个三角形不一定相似,课堂练习2就是通过让学生联想、类比全等三角形中SSA条件下三角形的不确定性,来达到加深理解判定方法2的条件的目的的.
∴此方程无解.∴两个正方形的面积之和不可能等于12cm2.方法总结:对于生活中的应用题,首先要全面理解题意,然后根据实际问题的要求,确定用哪些数学知识和方法解决,如本题用方程思想和一元二次方程的根的判定方法来解决.三、板书设计列一元二次方程解应用题的一般步骤可以归结为“审,设,列,解,检,答”六个步骤:(1)审:审题要弄清已知量和未知量,问题中的等量关系;(2)设:设未知数,有直接和间接两种设法,因题而异;(3)列:列方程,一般先找出能够表达应用题全部含义的一个相等关系,列代数式表示相等关系中的各个量,即可得到方程;(4)解:求出所列方程的解;(5)检:检验方程的解是否正确,是否保证实际问题有意义;(6)答:根据题意,选择合理的答案.经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型.通过学生创设解决问题的方案,增强学生的数学应用意识和能力.
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
(一)发展特色产业。产业兴,则乡村兴,x镇不断探索特色产业发展,围绕打造“一村一品”,努力促进乡村振兴不断拓宽新途径。松南建成苗木基地x亩(其中村集体x亩),带动村民就业x余人;青贮玉米x吨、黄贮玉米秸秆x吨,可加工销售黄贮饲料x吨,预计实现经营性收入x万元以上,净收益x万元以上。乔圩种植羊肚菌菇、西瓜、反季节西红柿等年经营性收入可达x万元;陆郢连片种植西瓜近x亩、建设蔬菜大棚x个,可增加经营性收入近x万元,同时带动周边农户就业,实现户均增收x万余元。曹徐种植艾草近x亩,预计可增加村集体经济收入超过x万元。x村与村民合作建设草莓园,预计可实现村集体经济经营性收入x万余元;安集建设火龙果和葡萄采集园,可实现村集体经济收入x余万元。
三注重统筹结合。做好脱贫户分类管理和开发式帮扶工作,结合排查结果,做好稳定脱贫户、一般脱贫户、脱贫监测户的分类工作,结合群众意愿和家庭实际,逐户完善针对性开发式帮扶计划,激发其内生动力。 三、重整改,促提升 一是做到整改到位。对日常排查发现的问题,不回避、不推脱、不遮掩、不护短,在件件有着落上发力。以务实的举措抓好整改,细化整改措施,逐一明确责任领导、责任单位和整改时限,按计划、分步骤地抓好整改落实。二是做到举一反三。**镇以落实整改、促进工作为切入点,解决突出问题,作为改进作风、推动工作、促进发展的重要手段,坚持举一反三,做到问题动态清零。三是做到守住底线。**镇严格落实“四个不摘”要求,不断巩固拓展“两不愁三保障”及饮水安全成果,落实好防止返贫动态监测和帮扶机制,坚决守住防返贫底线,从严从实从细、用心用力推进防止返贫监测帮扶工作。
下一步,我们将坚持问题导向、效果导向,聚焦“五大振兴”,扎实做好谋规划、守底线、抓衔接、促振兴各项工作,推动全县巩固拓展脱贫攻坚成果同乡村振兴有效衔接工作不断取得新进展、新成效。 一是进一步深化“遇困即扶”。健全完善防返贫监测和帮扶机制,抓实网格化管理、信息化排查、精准化帮扶,确保早发现、早干预、早帮扶。严格落实我市监测对象“7天快速认定”的工作要求,全面引入第三方对开展入户调查评估,提高工作效率和识别精准度。压实“三类人员”风险消除工作责任,加强工作调度,加快风险消除速度。 二是进一步抓实产业就业。以产业帮扶项目为基础,加强带贫经营主体、致富带头人培育培养,完善利益联结机制,积极落实消费帮扶、小额信贷等政策,帮助农业经营主体不断发展壮大,带动更多农村群众增收致富。持续深化“1+6”就业帮扶长效机制,强化就业数据、岗位落实等工作调度,督促指导各地加快就业帮扶车间建设,有效帮助脱贫人口和监测对象持续端稳“铁饭碗”。
在线
客服