提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

长方形、正方形面积计算

  • 人教版新课标小学数学三年级下册正方形的面积与周长对比说课稿

    人教版新课标小学数学三年级下册正方形的面积与周长对比说课稿

    1.估计一下教室地面的大小,并说说你是怎样估计的?如果知道教室的长为8米,宽为6米,请问它的面积是多少?如果要在教室的天花板一周围上装饰线条,需要多少米线条?2.小刚房间的一面墙壁长6米,宽3米,墙上有一扇窗面积是3平方米,现在要粉刷这面墙壁,要粉刷的面积是多少?3.一辆洒水车每分行驶60米,洒水的宽度是8米,洒水车直行9分,被洒水的地面是多少平方米?4.一张长方形的纸,长9厘米,宽4厘米,剪下一个最大的正方形后,剩下纸片的面积是多少平方厘米?5.小明用36厘米长的铁丝围成一个正方形,这个正方形的面积是多少平方厘米?6.有两个大小一样的长方形,长18厘米,宽9厘米,拼成一个正方形,它的周长是多少?拼成一个长方形,它的周长是多少?拼成的两个图形面积有什么关系?是多少?

  • 人教版新课标小学数学三年级上册长方形和正方形的周长说课稿2篇

    人教版新课标小学数学三年级上册长方形和正方形的周长说课稿2篇

    教学活动是师生互动、生生互动的过程,传统的教,将让位于学生的学,学生才是学习的主人,一切只有从学生出发,才能有效的促进教学,才能有效的促进学生的发展。教师要为学生创造一个自主、探索的空间。根据教材的特点及学生的认知规律,我运用电教手段,在学生自主探究、小组合作、教师引导的学习方式中进行教学。问题是数学的心脏,数学思维的过程就是不断地提出问题和解决问题的过程,因此,在数学课堂教学中,教师或提出问题设置悬念,以唤起学生的学习需要,激发兴趣;或设计问题串层层深入突破难点;或拓展问题使学生加深对概念的理解;或提出如何归纳小结整理新知的问题,总之,在课堂中教师及时地向学生提出新的数学问题。为更深入地进行数学思维活动提供动力和方向,使数学思维活动持续不断地向前发展。

  • 北师大版小学数学二年级下册《长方形与正方形》说课稿

    北师大版小学数学二年级下册《长方形与正方形》说课稿

    (2)研究正方形:通过前面这个环节,学生已经掌握了研究长方形特征的方法,很自然地拿出一个正方形,通过看、数、量、折、小组讨论、展示交流等活动归纳出正方形的特征:正方形四条边都相等,四个角都是直角,这也是本节课的重点内容,但并不是难点,可由中下学生来完成,给他们以展示技能的机会。通过一系列的探究活动,学生的学习积极性已被调动,思维正处于活跃阶段,此时我把学生带到本节课的难点环节(3)想一想,长方形和正方形有什么相同点和不同点?对于学生的思考结果,老师并不急于回答,而是引导学生从长方形和正方形边和角的共同点去进行研究分析,让学生充分经历思考学习的过程,最后才巧妙地借助多媒体,直观地帮学生理解正方形是一个特殊的长方形,在这里多媒体化静为动,化抽象为直观,较好地帮学生突破了难点。至此,学生已经掌握了长方形、正方形的有关知识,此时,他们急于找到一块用武之地,以展示自我,体验成功,于是我把学生带入到“应用新知,理解提高”的环节。

  • 《正方形》说课稿

    《正方形》说课稿

    二、学习新知1.正方形的定义在这一环节中,学生很容易犯的一个错误就是条件重复。这时我会引导学生从画图入手,提示他们:你能不能减少条件画出正方形呢?这一环节中我的观点是正方形的定义不是唯一的。我们可以从不同的角度来总结,只要合理就加以肯定。比如当学生总结出:四个角都是直角,四条边都相等的四边形是正方形。这时可以提醒学生是不是一定要四条边都相等,减少边的条数可以画出来吗?角的个数可以减少吗?鼓励学生动手试一试。通过动手画图可以很容易的得到正方形的一个定义:三个角都是直角,一组邻边都相等的四边形是正方形。通过小组讨论的形式来完成这一环节的设置。鼓励学生利用现有的材料继续构造正方形。从另一个角度总结正方形的定义。

  • 初中数学冀教版八年级下册《正方形》说课稿

    初中数学冀教版八年级下册《正方形》说课稿

    二、学习新知1.正方形的定义在这一环节中,学生很容易犯的一个错误就是条件重复。这时我会引导学生从画图入手,提示他们:你能不能减少条件画出正方形呢?这一环节中我的观点是正方形的定义不是唯一的。我们可以从不同的角度来总结,只要合理就加以肯定。比如当学生总结出:四个角都是直角,四条边都相等的四边形是正方形。这时可以提醒学生是不是一定要四条边都相等,减少边的条数可以画出来吗?角的个数可以减少吗?鼓励学生动手试一试。通过动手画图可以很容易的得到正方形的一个定义:三个角都是直角,一组邻边都相等的四边形是正方形。通过小组讨论的形式来完成这一环节的设置。鼓励学生利用现有的材料继续构造正方形。从另一个角度总结正方形的定义。

  • 北师大初中数学九年级上册正方形的判定2教案

    北师大初中数学九年级上册正方形的判定2教案

    三:巩固新知1、判断对错:(1)如果一个菱形的两条对角线相等,那么它一定是正方形. ( )(2)如果一个矩形的两条对角线互相垂直,那么它一定是正方形.( )(3)两条对角线互相垂直平分且相等的四边形,一定是正方形. ( )(4)四条边相等,且有一个角是直角的四边形是正方形. ( )2、已知:点E、F、G、H分别是正方形ABCD四条边上的中点,并且E、F、G、H分别是AB、BC、CD、AD的中点.求证:四边形EFGH是正方形.3、自己完成课本P23的议一议四、小结1.正方形的判定方法.2.了解正方形、矩形、菱形之间的联系与区别,体验事物之间是相互联系但又有区别的辩证唯物主义观点.3.本节的收获与疑惑.

  • 北师大初中数学九年级上册正方形的性质1教案

    北师大初中数学九年级上册正方形的性质1教案

    在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法总结:正方形被对角线分成4个等腰直角三角形,因此在正方形中解决问题时常用到等腰三角形的性质与直角三角形的性质.【类型三】 利用正方形的性质证明线段相等如图,已知过正方形ABCD的对角线BD上一点P,作PE⊥BC于点E,PF⊥CD于点F,求证:AP=EF.解析:由PE⊥BC,PF⊥CD知四边形PECF为矩形,故有EF=PC,这时只需说明AP=CP,由正方形对角线互相垂直平分可知AP=CP.证明:连接AC,PC,如图.∵四边形ABCD为正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四边形PECF为矩形,∴PC=EF,∴AP=EF.方法总结:(1)在正方形中,常利用对角线互相垂直平分证明线段相等;(2)无论是正方形还是矩形,经常连接对角线,这样可以使分散的条件集中.

  • 北师大初中数学九年级上册正方形的判定2教案

    北师大初中数学九年级上册正方形的判定2教案

    三:巩固新知1、判断对错:(1)如果一个菱形的两条对角线相等,那么它一定是正方形. ( )(2)如果一个矩形的两条对角线互相垂直,那么它一定是正方形.( )(3)两条对角线互相垂直平分且相等的四边形,一定是正方形. ( )(4)四条边相等,且有一个角是直角的四边形是正方形. ( )2、已知:点E、F、G、H分别是正方形ABCD四条边上的中点,并且E、F、G、H分别是AB、BC、CD、AD的中点.求证:四边形EFGH是正方形.3、自己完成课本P23的议一议四、小结1.正方形的判定方法.2.了解正方形、矩形、菱形之间的联系与区别,体验事物之间是相互联系但又有区别的辩证唯物主义观点.3.本节的收获与疑惑.

  • 北师大初中数学九年级上册正方形的判定1教案

    北师大初中数学九年级上册正方形的判定1教案

    ∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO≌△BEO,∴OE=OH.同理可证:OE=OF=OG,∴OE=OF=OG=OH.又∵EG⊥FH,∴四边形EFGH为菱形.∵EO+GO=FO+HO,即EG=HF,∴四边形EFGH为正方形.方法总结:对角线互相垂直平分且相等的四边形是正方形.探究点二:正方形、菱形、矩形与平行四边形之间的关系填空:(1)对角线________________的四边形是矩形;(2)对角线____________的平行四边形是矩形;(3)对角线__________的平行四边形是正方形;(4)对角线________________的矩形是正方形;(5)对角线________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法总结:从对角线上分析特殊四边形之间的关系应充分考虑特殊四边形的性质与判别,防止混淆.菱形、矩形、正方形都是平行四边形,且是特殊的平行四边形,特殊之处在于:矩形是有一个角为直角的平行四边形;菱形是有一组邻边相等的平行四边形;而正方形是兼具两者特性的更特殊的平行四边形,它既是矩形,又是菱形.

  • 北师大初中数学九年级上册正方形的判定1教案

    北师大初中数学九年级上册正方形的判定1教案

    ∴OE=OF=OG=OH.又∵EG⊥FH,∴四边形EFGH为菱形.∵EO+GO=FO+HO,即EG=HF,∴四边形EFGH为正方形.方法总结:对角线互相垂直平分且相等的四边形是正方形.探究点二:正方形、菱形、矩形与平行四边形之间的关系填空:(1)对角线________________的四边形是矩形;(2)对角线____________的平行四边形是矩形;(3)对角线__________的平行四边形是正方形;(4)对角线________________的矩形是正方形;(5)对角线________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法总结:从对角线上分析特殊四边形之间的关系应充分考虑特殊四边形的性质与判别,防止混淆.菱形、矩形、正方形都是平行四边形,且是特殊的平行四边形,特殊之处在于:矩形是有一个角为直角的平行四边形;菱形是有一组邻边相等的平行四边形;而正方形是兼具两者特性的更特殊的平行四边形,它既是矩形,又是菱形.

  • 北师大初中数学九年级上册正方形的性质2教案

    北师大初中数学九年级上册正方形的性质2教案

    1)正方形的边长为4cm,则周长为( ),面积为( ) ,对角线长为( );2))正方形ABCD中,对角线AC、BD交于O点,AC=4 cm,则正方形的边长为( ), 周长为( ),面积为( )3)在正方形ABCD中,AB=12 cm,对角线AC、BD相交于O,OA= ,AC= 。4) 1、正方形具有而矩形不一定具有的性质是( ) A、四个角相等 B、对角线互相垂直平分 C、对角互补 D、对角线相等. 5)、正方形具有而菱形不一定具有的性质( ) A、四条边相等 B对角线互相垂直平分 C对角线平分一组对角 D对角线相等. 6)、正方形对角线长6,则它的面积为_________ ,周长为________. 7)、顺次连接正方形各边中点的小正方形的面积是原正方形面积的( )A.1/2 B.1/3 C.1/4 D.1/ 5四:范例讲解:1、(课本P21例1)学生自己阅读课本内容、注意证明过程的书写2、 如图,分别以△ABC的边AB,AC为一边向外画正方形AEDB和正方形ACFG,连接CE,BG.求证:BG=CE

  • 北师大版小学数学三年级上册《长方形的周长》说课稿

    北师大版小学数学三年级上册《长方形的周长》说课稿

    3、情感目标:通过长方形和正方形周长计算公式的推导过程,培养学生的探索精神和合作精神。三、说教学重点、难点、关键点。本着课程标准,我在认识了本节课教材在整个知识结构中所处的地位,考虑学生认知情况的基础上,我确立了如下教学重点、难点、关键点。教学重点:推导、归纳长方形和正方形周长的计算公式。教学难点:理解并掌握长方形、正方形周长的计算方法。教学关键点:让学生在自己的计算和解决问题的过程中体会和理解算法。四、说教法。依据学生的认知规律,本节课的教学方法中力求体现以下几个方面的理念:从学生爱听的故事出发,为学生创设探究学习的情景;联系生活实际,让学生体会数学与生活的联系;改变学生的学习方式,运用合作学习,培养学生的协作能力;主要采用:创设情境引入新课、师生互动探讨新知、引导学生总结、点拨学生迷惑等教学方法。

  • 人教版新课标小学数学五年级上册三角形面积的计算说课稿2篇

    人教版新课标小学数学五年级上册三角形面积的计算说课稿2篇

    如通过数方格的方法求出三角形面积,让学生用两个三角形拼摆。一方面启发学生设法把研究的图形转化为已经会计算面积的图形,另一方面主动探索所研究的图形与已学的预先之间有什么样的联系,从而找出面积的计算方法,而不是把计算公式直接告诉学生。这样,既使学生在理解的基础上掌握三角形面积计算公式,印象深刻,又培养了学生的思维能力,动手操作能力,发展了空间观念。5、教材重点、难点和关键本节教学内容的重点是掌握三角形面积的计算公式;难点是理解三角形面积公式的推导过程;关键是通过操作实验,使学生明确每个三角形的面积是等底等高的平行四边形面积一半。在教学过程中注意以下几点,重点难点问题就迎刃而解。⑴ 加强学生动手操作,通过三次对两个完全相同的直角三角形、锐角三角形、钝角三角形的拼摆,引导学生弄清三角形面积与平行四边形面积关系,启发学生探索三角形面积的计算方法。

  • 人教版新课标小学数学五年级上册梯形面积的计算说课稿2篇

    人教版新课标小学数学五年级上册梯形面积的计算说课稿2篇

    8、应用公式,尝试计算梯形面积(出示一个基本图形让学生计算)〈这一环节意在让学生主动参与到数学活动中,亲自去体验,让学生运用自己已有的知识,大胆提出假想,共同探讨,互相验证,更强烈地激发学生探究学习的兴趣,更全面、更方便地揭示新旧知识之间的联系。这种让学生在活动中发现、活动中体验、活动中发散、活动中发展的过程,真真正正地体现了以人的发展为本的教育理念。〉(三)、深化巩固1、学习例1(1)、借助教具演示,理解“横截面”的含义。(2)、弄清渠口、渠底、渠深各是梯形的什么?(3)、学生尝试计算横截面积。〈巩固新知是课堂教学中不可缺少的一个过程,这一环节是为了将学生的学习积极性再次推向高潮,能更好地运用公式计算梯形面积,从中培养了学生解决简单实际问题的能力。〉

  • 北师大初中数学九年级上册相似三角形的周长和面积之比2教案

    北师大初中数学九年级上册相似三角形的周长和面积之比2教案

    ●教学目标(一)教学知识点1.相似三角形的周长比,面积比与相似比的关系.2. 相似三角形的周长比,面积比在实际中的应用.(二)能 力训练要求1.经历探索相似三角形的 性质的过程,培养学生的探索能力.2.利用相似三角形的性质解决实际问题训练学生的运用能力.(三)情 感与价值观要求1.学 生通过交流、归纳,总结相似三角形的周长比、面积比与相似比的关系,体会知识迁移、温故知新的好处.2.运用相似多边形的周长比,面积比解决实际问题,增强学生对知识的应用意识.●教学重点1.相似三角形的周长比、面积比与相似比关系的推导.2.运用相似三角形的比例关系解决实际问题.●教学难点相似三角形周长比、面积比与相似比的关系的推导及运用.●教学方法引导启发式通过温故知新,知识迁移,引导学生发现新的结论,通过比较、分析,应用获得的知识达到理解并掌握的 目的.●教具准备投影片两张第一张:(记作§4.7.2 A)第二张:(记作§4.7.2 B)

  • 北师大初中数学九年级上册相似三角形的周长和面积之比1教案

    北师大初中数学九年级上册相似三角形的周长和面积之比1教案

    解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中线,即F是AD的中点.∵点E是AB的中点,∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四边形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面积为8.易错提醒:在运用“相似三角形的面积比等于相似比的平方”这一性质时,同样要注意是对应三角形的面积比,在本题中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四边形BDFE=1:2之类的错误.三、板书设计相似三角形的周长和面积之比:相似三角形的周长比等于相似比,面积比等于相似比的平方.经历相似三角形的性质的探索过程,培养学生的探索能力.通过交流、归纳,总结相似三角形的周长比、面积比与相似比的关系,体验化归思想.运用相似多边形的周长比,面积比解决实际问题,训练学生的运用能力,增强学生对知识的应用意识.

  • 北师大初中九年级数学下册弧长及扇形的面积教案

    北师大初中九年级数学下册弧长及扇形的面积教案

    1.了解扇形的概念,理解n°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用;(重点)2.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长l=nπR180和扇形面积S扇=nπR2360的计算公式,并应用这些公式解决一些问题.(难点)一、情境导入如图是圆弧形状的铁轨示意图,其中铁轨的半径为100米,圆心角为90°.你能求出这段铁轨的长度吗(π 取3.14)?我们容易看出这段铁轨是圆周长的14,所以铁轨的长度l≈2×3.14×1004=157(米). 如果圆心角是任意的角度,如何计算它所对的弧长呢?二、合作探究探究点一:弧长公式【类型一】 求弧长如图,某厂生产横截面直径为7cm的圆柱形罐头盒,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头盒侧面所形成的弧的度数为90°,则“蘑菇罐头”字样的长度为()

  • 人教版新课标小学数学五年级上册多边形的面积教案

    人教版新课标小学数学五年级上册多边形的面积教案

    教学目标: 1.理解、掌握梯形面积的计算公式,并能运用公式正确计算梯形的面积。2.发展学生空间观念。培养抽象、概括和解决实际问题的能力。3.掌握“转化”的思想和方法,进一步明白事物之间是相互联系,可以转化的。教学重点:理解、掌握梯形面积的计算公式。教学难点:理解梯形面积公式的推导过程。教学过程:1.导入新课(1)投影出示一个三角形,提问:这是一个三角形,怎样求它的面积?三角形面积计算公式是怎样推导得到的?学生回答后,指名学生操作演示转化的方法。(2)展示台出示梯形,让学生说出它的上底、下底和各是多少厘米。(3)教师导语:我们已学会了用转化的方法推导三角形面积的计算公式,那怎样计算梯形的面积呢?这节课我们就来解决这个问题。(板书课题,梯形面积的计算)

  • 北师大初中九年级数学下册图形面积的最大值1教案

    北师大初中九年级数学下册图形面积的最大值1教案

    如图所示,要用长20m的铁栏杆,围成一个一面靠墙的长方形花圃,怎么围才能使围成的花圃的面积最大?如果花圃垂直于墙的一边长为xm,花圃的面积为ym2,那么y=x(20-2x).试问:x为何值时,才能使y的值最大?二、合作探究探究点一:二次函数y=ax2+bx+c的最值已知二次函数y=ax2+4x+a-1的最小值为2,则a的值为()A.3 B.-1 C.4 D.4或-1解析:∵二次函数y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故选C.方法总结:求二次函数的最大(小)值有三种方法,第一种是由图象直接得出,第二种是配方法,第三种是公式法.变式训练:见《学练优》本课时练习“课堂达标训练” 第1题探究点二:利用二次函数求图形面积的最大值【类型一】 利用二次函数求矩形面积的最大值

  • 北师大版小学数学五年级上册《组合图形的面积》说课稿

    北师大版小学数学五年级上册《组合图形的面积》说课稿

    (二)导学释疑在这一环节中,我首先用课件出示例题“智慧老人准备给客厅铺上地板,算一算智慧老人客厅面积有多大?”,创设了智慧老人家铺地板遇到困难请同学们帮忙的情境,引导学生通过以下三方面展开独学、对学、群学,以达成学习目标:1.我们不妨先来估算一下客厅的面积大约是多少?(设计估一估的教学活动,并不是蜻蜓点水,而是在学生思考之后,有意识的引导,从而培养学生的估算意识,同时也是对后面精算的解决方法的一个铺垫和启示。)2.独立思考,小组交流,展示汇报学习情况(这是本节课的重要环节,在学生解决组合图形面积时,重视把学生的思维过程充分暴露出来,首先,学生通过自己独立思考,得出解决问题的方法;然后通过小组和全班交流,使学生学会了别人的方法;最后,从这些方法中,比较、反思、知道最简便的方法。)3.看教科书88页内容。(一方面可以让学生对照教科书检查自己的探究过程,另一方面可以让学生对所学知识进行内化整理)

12345678910111213下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!
在线客服
有奖反馈