2.过程与方法 通过实践操作、猜想验证、合作探究,经历发现“三角形任意两边的和大于第三边”这一性质的活动过程,发展空间观念,培养逻辑思维能力,体验“做数学”的成功。3.情感态度与价值观 (1)发现生活中的数学美,会从美观和实用的角度解决生活中的数学问题。 (2)学会从全面、周到的角度考虑问题。 【教学重点】 理解、掌握“三角形任意两边之和大于第三边”的性质;理解两点间的距离的含义。【教学难点】 引导探索三角形的边的关系,并发现“三角形任意两边的和大于第三边”的性质。【教学方法】启发式教学、自主探索、合作交流、讨论法、讲解法。【课前准备】多媒体、学具袋【课时安排】 1课时【教学过程】(一)复习导入 师:什么样的图形叫三角形?生交流:由3条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。
一、 教材分析“三角形的特性”是人教版小学数学四年级下册第五章第一节的内容,本节课主要阐述了三个方面,一是三角形的定义,二是三角形高和底的定义 。是学生在学习了线段、角基础上进行教学的,为进一步学习三角形的分类和内角和打下坚定的基础。二、 学情分析对于学情的合理把握是上好一堂课的基础。本节课的授课对象为四年级的学生,他们的观察、记忆、想象能力在迅速的发展,有强烈的好奇心。所以在教学过程中应该更多的激发他们的学习兴趣和情感动力,引导他们多观察,多想象。 三、 教学目标根据新课程标准、教材特点、学生实际,我确定了如下教学目标:(1)知识与技能目标:让学生初步理解并掌握三角形的特性及三角形高和底的含义,能准确作出三角形的高 。(2)过程与方法目标:经历猜测、观察、操作等教学活动,培养学生相互转化、渗透、迁移的数学思想方法。(3)情感态度与价值观目标:让学生积极参与数学学习活动,对数学有好奇心和求知欲。
2.过程与方法 通过研究三角形、四边形的内角和,让学生经历观察、思考、推理、归纳的过程,渗透猜想--验证--结论--运用的学习方法,培养学生动手操作和合作交流的能力,增强学生的主体探究意识。3.情感态度与价值观 培养学生自主学习、积极探索的好习惯,激发学生学习数学、应用数学的兴趣,体验学习数学的快乐。【教学重点】 引导学生发现三角形内角和是180°,并能应用这一知识解决一些简单问题;通过量、拼、算等探究活动,使学生了解任意四边形的内角和都是3600 。【教学难点】 用不同方法验证三角形的内角和是180°;引导学生利用转化的方法把四边形或多边形转化成三角形,发现多边形的边数与内角和之间的关系。【教学方法】启发式教学、自主探索、合作交流、讨论法、讲解法。【课前准备】多媒体、不同类型的三角形各一个、量角器。
1. 知识与技能 通过学生活动,帮助学生理解三角形按角分类的方法,掌握直角三角形、锐角三角形、钝角三角形的概念;知道等腰三角形、等边三角形。培养学生观察,动手操作和抽象概括的能力;发展空间观念。2.过程与方法 使学生经历观察、操作、比较、概括等过程,在分类中体会每一类三角形角的特点;发现边的特点。渗透集合思想。3.情感态度与价值观 激发学生的主动参与意识,使学生感受到成功的喜悦,更增强学习兴趣。【教学重点】 直角三角形、锐角三角形、钝角三角形的概念。【教学难点】发现三角形角的特点。【教学方法】启发式教学、自主探索、合作交流、讨论法、讲解法。【课前准备】多媒体【课时安排】 1课时【教学过程】(一)复习导入 师:说一说下面的角各是什么角。
在汇报的过程中互相判断,我适时的用反例来加以说明,引导学生在争论中逐步形成对三角形的正确认识,得出:由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。再让学生根据三角形的意义来解释判断题中没选中的图形为什么不是三角形,从而加深对三角形意义的理解。【设计意图:让学生画三角形、判断三角形使学生感觉到自己在玩中学,在学中玩,发挥学生的主体作用,学生经过独立思考、逐步探索和相互交流后,可以加深对三角形的认识,有效的突破本节课的重点。】3、用字母表示三角形告诉学生为了表达方便,可以用字母分别表示三角形的三个顶点,用A、B、C表示这个三角形的三个顶点,这个三角形就可以表示成三角形ABC。(同时板书三角形ABC。)让学生选择三个字母表示出自己画的三角形,培养学生的符号感。
五、巩固运用 深化理解1、教材28页上的第一道练习题,请个别学生到视频展台做此题,2、游戏巩固老师左手拿一个三角形,右手拿一张卡纸遮住三角形的两个角,只露出一个角,让学生猜这会是什么样的三角形? 设计第一道练习题目的在于巩固新知,形成技能,培养学生联系新知识,灵活解决问题的能力。当学生感到有些疲劳时,这时我就根据教材内容和学生心理特点,采用学生喜闻乐见的游戏练习方式,增加题目的趣味性,激发学生的学习兴趣。六、总结评价,体验成功让学生谈谈经过自己动手操作、小组合作、自主探索发现的三角形分类方法及各种三角形特征,不仅及时有效地巩固所学知识,训练学生的语言表达能力,而且可以使学生从中感受、体验到一个探索者的成功乐趣,从而增强学习动力与信心。
3学生探讨结束后让学生代表发言,总结归纳三角形三边的不等关系。学生代表可结合教具演示。教师问:我们是否要把三条线段中的每两条线段都相加后才能作出判断?有没有快捷的方法?(用较小的两条线段的和与第三条线段的大小关系来检验)。4得到结论:三角形任意两边之和大于第三边(电脑显示)。教师问:三角形的两边之和大于第三边,那么,三角形的两边之差与第三边有何关系呢?感兴趣的同学还可以下课继续研究。5巩固练习:为了营造更美的城市,许多城市加强了绿化建设。这些绿化地带是不允许踩的。(电脑动画演示有人斜穿草地的实践问题)。他运用了我们学习过的什么知识?6(1)有人说自己步子大,一步能走两米多,你相信吗?为什么?(由学生小组讨论后回答。然后电脑演示篮球明星姚明的身高及腿长,以此来判断步幅应有多大?)
三、说教材的重点和难点教学重点是:通过观察、讨论,让学生探究发现三角形的不同分类方法,从而进一步掌握三角形的特征。教学难点是:通过实践操作,让学生理解掌握等腰三角形和等边三角形的基本特征及其关系。四、说教学理念1、波利亚说:“学习任何知识的最佳途经都是由自己去发现,因为这种发现理解最深刻,也最容易掌握其中的规律、性质和内在联系”。学生的学习过程是一个主动建构知识的过程,教师要激活学生先前的知识经验,创设具体情境,让学生在经历、体验、探索中真正感悟。2、体现学生的主体作用,把握好教师的主导地位,让学生在活动中体验,在体验中学习、在学习中感悟。 3、突出体现教学的16字原则:主体探究、创境激趣、合作互动、创新发展。 五、说教法1、运用操作法,确定每个三角形的三个内角各是什么角。 2、通过比较法,得出各个三角形的异同。3、采用探究法,找出等腰三角形和等边三角形的联系。 4、通过游戏与练习内化新知。
一、说教材“认识图形”是“空间与图形”的重要内容之一。学生在此之前已经对三角形有了一定的认识。因为教材的小标题为“探索与发现”,所以我主要是通过让学生在自主探索中学习本课内容。先让学生明确“内角”的意义,然后引导学生探索三角形内角和等于多少。结合学生已经有的知识经验,对于本课我确立了以下几个教学目标:1、通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的度数和等于180度。已知三角形两个角的度数,会求第三个角的度数。2、渗透猜想--验证--结论--运用--引申的学习方法,培养学生动手操作和合作交流的能力,培养学生的探究意识。3、培养学生自主学习、积极探索的好习惯,激发学生学习数学应用数学的兴趣,体验学习数学的快乐。把教学重难点设定为验证三角形的内角和是180°,并学会应用。
1、教学内容九年义务教育六年制小学数学教科书(北师大版)四年级下册第27页至29页的内容及相关练习题。2、教材简析“三角形分类”是新课程教材中“空间与图形”领域内容的一部分。学生在学习此内容之前,已经学习了三角形的认识,能够在物体的面中找出三角形,学习了角的知识,认识了常见的角,为学生研究三角形的特征,从角和边的不同角度对三角形进行分类做好了有力的知识支撑。三角形是最简单也是最基本的多边形,一切多边形都可以分割成若干个三角形,学好这部分内容,为学习其他多边形积累了知识经验,为进一步学习三角形的有关知识打下了基础。3、教学目标根据教材的内容及学生的知识现状和年龄心理特点,我制定了以下教学目标。①知识目标;学生通过观察、操作、比较、发现三角形角和边的特征,会给三角形分类,理解并掌握各种三角形的特征。
如通过数方格的方法求出三角形面积,让学生用两个三角形拼摆。一方面启发学生设法把研究的图形转化为已经会计算面积的图形,另一方面主动探索所研究的图形与已学的预先之间有什么样的联系,从而找出面积的计算方法,而不是把计算公式直接告诉学生。这样,既使学生在理解的基础上掌握三角形面积计算公式,印象深刻,又培养了学生的思维能力,动手操作能力,发展了空间观念。5、教材重点、难点和关键本节教学内容的重点是掌握三角形面积的计算公式;难点是理解三角形面积公式的推导过程;关键是通过操作实验,使学生明确每个三角形的面积是等底等高的平行四边形面积一半。在教学过程中注意以下几点,重点难点问题就迎刃而解。⑴ 加强学生动手操作,通过三次对两个完全相同的直角三角形、锐角三角形、钝角三角形的拼摆,引导学生弄清三角形面积与平行四边形面积关系,启发学生探索三角形面积的计算方法。
证明:过点A作AF∥DE,交BC于点F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般要用到其中的两条线互相重合.三、板书设计1.全等三角形的判定和性质2.等腰三角形的性质:等边对等角3.三线合一:在等腰三角形的底边上的高、中线、顶角的平分线中,只要知道其中一个条件,就能得出另外的两个结论.本节课由于采用了动手操作以及讨论交流等教学方法,有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高
教学说明:问题(1)是借助“边边边”条件判定三角形全等的知识来解释的。因为三边长度确定后三角形的形状就被固定了,因此三角形具有稳定性。问题(2)可用多媒体展示三角形稳定性在实际生活中应用的例子。要解决问题(3),只需要在四边形中构建出三角形结构,这样就可以帮助其稳定。设计意图:通过学生动手操作,探究三角形稳定性及生活中的应用,让学生体验数学来源于生活,服务于生活的辩证思想,感受数学美。 (五)总结反思,情意发展问题:通过这节课的学习你有什么收获?多媒体演示:(1)知识方面:①三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。②三角形具有稳定性。(2)技能方面:说明三角形全等时要注意公共边的应用。
解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
解:∵CE⊥AF,∴∠DEF=90°,∴∠EDF=90°-∠F=90°-40°=50°.由三角形的内角和定理得∠C+∠DBC+∠CDB=∠F+∠DEF+∠EDF,又∵∠CDB=∠EDF,∴30°+∠DBC=40°+90°,∴∠DBC=100°.方法总结:本题主要利用了“直角三角形两锐角互余”的性质和三角形的内角和定理,熟记性质并准确识图是解题的关键.三、板书设计1.三角形的内角和定理:三角形的内角和等于180°.2.三角形内角和定理的证明3.直角三角形的性质:直角三角形两锐角互余.本节课通过一段对话设置疑问,巧设悬念,激发起学生获取知识的求知欲,充分调动学生学习的积极性,使学生由被动接受知识转为主动学习,从而提高学习效率.然后让学生自主探究,在教学过程中充分发挥学生的主动性,让学生提出猜想.在教学中,教师通过必要的提示指明学生思考问题的方向,在学生提出验证三角形内角和的不同方法时,教师注意让学生上台演示自己的操作过程和说明自己的想法,这样有助于学生接受三角形的内角和是180°这一结论
方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进行化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进行化简.三、板书设计1.三角形按边分类:有两边相等的三角形叫做等腰三角形,三边都相等的三角形是等边三角形,三边互不相等的三角形是不等边三角形.2.三角形中三边之间的关系:三角形任意两边之和大于第三边,三角形任意两边之差小于第三边.本节课让学生经历一个探究解决问题的过程,抓住“任意的三条线段能不能围成一个三角形”引发学生探究的欲望,围绕这个问题让学生自己动手操作,发现有的能围成,有的不能围成,由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,重点研究“能围成三角形的三条边之间到底有什么关系”.通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论.这样教学符合学生的认知特点,既增加了学习兴趣,又增强了学生的动手能力
1、教学内容本节课是人教版小学数学四年级下册第四单元《小数的意义和性质》第一课时《小数的意义》的教学内容。小数的意义是一节概念教学课,这是在学习了“分数的初步认识”和“小数的初步认识”的基础上学习的。掌握小数的意义,是这单元教学的重点,直接关系到小数的性质、单名数和复名数相互改写等相关知识。 2、教材的重点和难点小数的初步认识是小学数学概念中较抽象,难理解的内容。一位小数是十分之几的分数的另一种表示形式。学生虽然对分数已有了初步的认识,也学过长度单位、货币单位间的进率,但理解小数的含义还是有一定的困难的。同时学生在以后的学习中,小数方面出现的很多问题是属于小数概念不清。因此,理解小数的含义(一位小数表示十分之几)既是本课时的重点、又是难点。在教学中要注意抓住分数与小数的含义的关键。
用米作单位,用分数怎么表示呢?(1/10米)师:1/10米也可以写成0.1米。师:请同学们看米尺,从0到30,从0到70,应该是几分米,十分之几米?用小数怎样表示呢?可先和同桌商量商量。学生同桌讨论后反馈师根据反馈结果提问:请同学观察一下1/10米和0.1米,3/10米和0.3米,7/10米和0.7米之间有什么关系?随学生的回答出示1/10米=0.1米 3/10米=0.3米 7/10米=0.7米。再让学生观察上面的等式,四人小组讨论你发现了什么?使学生通过讨论明确:分母是10的分数可以写成一位小数,一位小数表示十分之几。2、 认识两位小数 、三位小数师:我们已经知道了一位小数表示十分之几,那么请同学猜一猜两位小数与什么样的分数有关?三位小数与什么样的分数有关?(具体的步骤和前面相似)让学生根据一位小数表示十分之几,猜想出两位小数和什么样的分数有关?有意识地促进“迁移”,使学生在学会的同时学习能力也得到提高。关于计数单位的教学我个人认为还是放到52页小数数位顺序表这里教学比较妥当。
1.理解并掌握三角形全等的判定方法——“角边角”“角角边”;(重点)2.能运用“角边角”“角角边”判定方法解决有关问题.(难点) 一、情境导入如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带哪块去?学生活动:学生先自主探究出答案,然后再与同学进行交流.教师点拨:显然仅仅带①或②是无法配成完全一样的玻璃的,而仅仅带③则可以,为什么呢?本节课我们继续研究三角形全等的判定方法.二、合作探究探究点一:全等三角形判定定理“ASA”如图,AD∥BC,BE∥DF,AE=CF,试说明:△ADF≌△CBE.解析:根据平行线的性质可得∠A=∠C,∠DFE=∠BEC,再根据等式的性质可得AF=CE,然后利用“ASA”可得到△ADF≌△CBE.
AD=CD,∠ADE=∠CDG,DE=GD,∴△ADE≌△CDG(SAS),∴AE=CG;(2)设AE与DG相交于M,AE与CG相交于N.在△GMN和△DME中,由(1)得∠CGD=∠AED,又∵∠GMN=∠DME,∠DEM+∠DME=90°,∴∠CGD+∠GMN=90°,∴∠GNM=90°,∴AE⊥CG.三、板书设计1.边角边:两边及其夹角分别相等的两个三角形全等,简写成“边角边”或“SAS”.两边和其中一边的对角对应相等的两个三角形不一定全等.2.全等三角形判定与性质的综合运用本节课从操作探究入手,具有较强的操作性和直观性,有利于学生从直观上积累感性认识,从而有效地激发了学生的学习积极性和探究热情,提高了课堂的教学效率,促进了学生对新知识的理解和掌握.从课堂教学的情况来看,学生对“边角边”掌握较好,但在探究三角形的大小、形状时不会正确分类,需要在今后的教学和作业中进一步加强分类思想的巩固和训练
在线
客服