圆的一般方程教学设计人教A版高中数学选择性必修第一册
-
- 页数:8页
- 字数:约 5711 字
- 大小:154.21KB
- 格式:.docx
- 版本:Office2016及以上版本
- 作者:Vincent演示
圆的一般方程教学设计
本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习圆的一般方程。
本节内容是在学生学习了圆的标准方程基础上,进一步研究圆的一般方程,发现圆的方程特点,即为特殊的二元二次方程。明确圆的一般方程的特点,掌握圆的方程的算法及与圆有关的轨迹问题。在这一过程中,进一步体会数形结合的思想和方程思想,形成用代数的方法解决几何问题的能力。
同时,由于圆也是特殊的圆锥曲线,因此,学习了圆的方程,就为后面学习其它圆锥曲线的方程奠定了基础。也就是说,本节内容在教材体系中起到承上启下的作用,具有重要的地位。坐标法不仅是研究几何问题的重要方法,而且是一种广泛应用于其他领域的重要数学方法。通过坐标系,把点和坐标、曲线和方程联系起来,实现了形和数的统一。
课程目标
学科素养
A.理解圆的一般方程及其特点.
B.掌握圆的一般方程和标准方程的互化.
C.会求圆的一般方程以及与圆有关的简单的轨迹方程问题.
1.数学抽象:二元二次方程与圆的一般方程
2.逻辑推理:圆的一般方程与标准方程的互化
3.数学运算:求圆的一般方程
4.数学建模:圆的一般方程的特点
重点:掌握圆的一般方程并会求圆的一般方程
难点:与圆有关的简单的轨迹方程问题
多媒体
教学过程
教学设计意图
核心素养目标
一、情境导学
前面我们已讨论了圆的标准方程为(x-a)2+(y-b)2=r2,现将其展开
可得:x2+y2-2ax-2bx+a2+b2-r2=0.可见,任何一个圆的方程都可以变形x2+y2+Dx+Ey+F=0的形式.
请大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲线是不是圆?下面我们来探讨这一方面的问题.
二、探究新知
例如,对于方程对其进行配方,得,因为任意一点的坐标都不满足这个方程,所以这个方程不表示任何图形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通过恒等变换为圆的标准方程,这表明形如x2+y2+Dx+Ey+F=0的方程不一定是圆的方程.
一、圆的一般方程
(1)当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0
表示以(-,-)为圆心,为半径的圆,
将方程x2+y2+Dx+Ey+F=0,配方可得
(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0,表示一个点(-,-)
(3)当D2+E2-4F<0时,方程不表示任何图形.
1.二元二次方程要想表示圆,需x2和y2的系数相同且不为0,没有xy这样的二次项.
2.几个常见圆的一般方程
(1)过原点的圆的方程:x2+y2+Dx+Ey=0(D,E不全为0),
(2)圆心在y轴上的圆的方程:x2+y2+Ey+F=0(E2-4F>0);
(3)圆心在x轴上的圆的方程,x2+y2+Dx+F=0(D2-4F>0);
(4)圆心在x轴上且过原点的圆的方程:x2+y2+Dx=0(D≠0);
(5)圆心在y轴上且过原点的圆的方程:x2+y2+Ey=0(E≠0).
1.圆x2+y2-6x=0的圆心坐标是 .
答案:(3,0)
2. 若方程x2+y2+Dx+Ey+F=0表示以(2,-4)为圆心,以4为半径的圆,
则F= .
答案:4
3.二元二次方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆需要满足哪些条件?
答案:(1)A=C,且均不为0; (2)B=0;(3)D2+E2-4AF>0.
三、典例解析
例1 判断方程x2+y2-4mx+2my+20m-20=0能否表示圆.若能表示圆,求出圆心和半径.
思路分析:可直接利用D2+E2-4F>0是否成立来判断,也可把左端配方,看右端是否为大于零的常数.
解:(方法1)由方程x2+y2-4mx+2my+20m-20=0
可知D=-4m,E=2m,F=20m-20,
∴D2+E2-4F=16m2+4m2-80m+80=20(m-2)2.
因此,当m=2时,它表示一个点;
当m≠2时,原方程表示圆,
此时,圆的圆心为(2m,-m),
半径为r=|m-2|.
(方法2)原方程可化为(x-2m)2+(y+m)2=5(m-2)2,
因此,当m=2时,它表示一个点;
当m≠2时,原方程表示圆,
此时,圆的圆心为(2m,-m),半径为r=|m-2|.
二元二次方程表示圆的判断方法
任何一个圆的方程都可化为x2+y2+Dx+Ey+F=0的形式,但形如x2+y2+Dx+Ey+F=0的方程不一定表示圆.判断它是否表示圆可以有以下两种方法:
(1)计算D2+E2-4F,若其值为正,则表示圆;若其值为0,则表示一个点;若其值为负,则不表示任何图形.
(2)将该方程配方为(x+)2+(y+)2=,根据圆的标准方程来判断.
跟踪训练1若方程x2+y2+2mx-2y+m2+5m=0表示圆,求:
(1)实数m的取值范围;
(2)圆心坐标和半径.
解:(1)据题意知D2+E2-4F=(2m)2+(-2)2-4(m2+5m)>0,
即4m2+4-4m2-20m>0,解得m<,
故m的取值范围为-∞,
(2)将方程x2+y2+2mx-2y+m2+5m=0
写成标准方程为(x+m)2+(y-1)2=1-5m,
故圆心坐标为(-m,1),半径r=.
例2 圆C过点A(1,2),B(3,4),且在x轴上截得的弦长为6,求圆C的方程.
思路分析:由条件知,所求圆的圆心、半径均不明确,故设出圆的一般方程,用待定系数法求解.
解:设所求圆的方程为x2+y2+Dx+Ey+F=0.
∵圆C过A(1,2),B(3,4),∴D+2E+F=-5,①
3D+4E+F=-25.②
令y=0,得x2+Dx+F=0.设圆C与x轴的两个交点的横坐标为x1,x2,则
x1+x2=-D,x1x2=F.
∵|x1-x2|=6,∴(x1+x2)2-4x1x2=36,
即D2-4F=36.③
由①②③得D=12,E=-22,F=27,或D=-8,E=-2,F=7.
故圆C的方程为x2+y2+12x-22y+27=0或x2+y2-8x-2y+7=0.
圆的方程的求法
求圆的方程时,如果由已知条件容易求得圆心坐标、半径或需利用圆心的坐标或半径列方程的问题,一般采用圆的标准方程,再用待定系数法求出a,b,r;如果已知条件与圆心和半径都无直接关系,一般采用圆的一般方程,再用待定系数法求出常数D,E,F.
跟踪训练2圆心在直线y=x上,且过点A(-1,1),B(3,-1)的圆的一般方程是 .
解析:设圆的方程为x2+y2+Dx+Ey+F=0,则圆心是(-,-),
由题意知,解得D=E=-4,F=-2,
即所求圆的一般方程是x2+y2-4x-4y-2=0.
答案:x2+y2-4x-4y-2=0
例3 已知等腰三角形的顶点是A(4,2),底边一个端点是B(3,5),求另一个端点C的轨迹方程,并说明它的轨迹是什么图形.
思路分析:设出点C的坐标,根据|AB|=|AC|列出方程并化简.
解:设另一端点C的坐标为(x,y).
依题意,得|AC|=|AB|.由两点间距离公式,得,
整理,得(x-4)2+(y-2)2=10.
这是以点A(4,2)为圆心,以为半径的圆,如图所示.
又因为A,B,C为三角形的三个顶点,
所以A,B,C三点不共线,即点B,C不能重合,
所以点C的横坐标x≠3,且点B,C不能为一直径的两端点,所以
≠4,即点C的横坐标x≠5.
故端点C的轨迹方程是(x-4)2+(y-2)2=10(x≠3,且x≠5),
即另一个端点C的轨迹是以A(4,2)为圆心,为半径的圆,但除去(3,5)和(5,-1)两点.
变式:求本例中线段AC中点M的轨迹方程.
解:设M(x,y),又A(4,2),M为线段AC的中点,∴C(2x-4,2y-2).
∵点C在圆(x-4)2+(y-2)2=10(x≠3,且x≠5)上,∴(2x-4-4)2+(2y-2-2)2=10,
∴(x-4)2+(y-2)2=.
由2x-4≠3,得x≠;由2x-4≠5,得x≠.
∴中点M的轨迹方程为(x-4)2+(y-2)2=(x≠,且x≠).
求动点的轨迹方程的常用方法
1.直接法:能直接根据题目提供的条件列出方程;
2.代入法:找到所求动点与已知动点的关系,代入已知动点所在的方程.
跟踪训练3 两个定点的距离为6,点M到这两个定点的距离的平方和为26,求点M的轨迹方程.
解:以两定点A,B所在直线为x轴,线段AB的中垂线为y轴,建立直角坐标系,设A(-3,0),B(3,0),M(x,y),
则|MA|2+|MB|2=26,
∴(x+3)2+y2+(x-3)2+y2=26,
化简得M点的轨迹方程为x2+y2=4
跟踪训练4 已知圆(x+1)2+y2=2上动点A,x轴上定点B(2,0),将BA延长到M,使AM=BA,
求动点M的轨迹方程.
解:设A(x1,y1),M(x,y),∵AM=BA,且M在BA的延长线上,
∴A为线段MB的中点,
由中点坐标公式得
∵A在圆上运动,将点A的坐标代入圆的方程,
得+12+2=2,
化简得(x+4)2+y2=8,∴点M的轨迹方程为(x+4)2+y2=8.
跟踪训练5 已知两点P(-2,2),Q(0,2)以及一条直线l:y=x,设长为 的线段AB在直线l移动,求直线PA与QB的交点M的轨迹方程.
解:∵线段AB在直线y=x上移动,且|AB|=,
∴可设点A(a,a),B(a+1,a+1).
∴直线PA的方程为y-2=(x+2)(a≠-2)①,
直线QB的方程为y-2=x(a≠-1)②,
当a=0时,直线PA与QB平行,两直线无交点,
当a≠0时,直线PA与QB相交,设交点为M(x,y).由②式可得
a=,将其代入①式,整理,得x2-y2+2x-2y+8=0③,
当a=-2或a=-1时,直线PA和QB的交点也满足③,
∴所求轨迹方程为x2-y2+2x-2y+8=0.
通过对圆的标准方程的讨论,引出圆的一般方程,同时类比直线方程的多种形式,帮助学生认识圆的一般方程与二元二次方程的关系。学会联系旧知,制定解决问题的策略。
通过对圆的一般方程的讨论,帮助学生总结圆的一般方程的特点。发展学生数学运算,数学抽象和数学建模的核心素养。
在典例分析和练习中掌握求圆的一般方程的基本方法,即:代数法与几何法。发展学生逻辑推理,直观想象、数学抽象和数学运算的核心素养。
通过与圆相关的轨迹问题的解决,提升学生数形结合,及方程思想,发展学生逻辑推理,直观想象、数学抽象和数学运算的核心素养。
三、达标检测
1.方程x2+y2-2x-4y+6=0表示的轨迹为( )
A.圆心为(1,2)的圆 B.圆心为(2,1)的圆
C.圆心为(-1,-2)的圆 D.不表示任何图形
解析:因为x2+y2-2x-4y+6=0等价于(x-1)2+(y-2)2=-1,即方程无解,所以该方程不表示任何图形,故选D. 答案:D
2.若圆x2+y2-2kx-4=0关于直线2x-y+3=0对称,则k等于( )
解析:由题意知,直线2x-y+3=0过圆心.∵圆心坐标为(k,0),
∴2k+3=0,k=- 答案:B
3.已知一动点M到点A(-4,0)的距离是它到点B(2,0)的距离的2倍,则动点M的轨迹方程是 .
解析:设动点M的坐标为(x,y),则|MA|=2|MB|,
即=2,
整理,得x2+y2-8x=0.故所求动点M的轨迹方程为x2+y2-8x=0.
答案:x2+y2-8x=0
4.已知点A(2,2),B(5,3),C(3,-1),求过A,B,C的圆的方程.
解:设这个圆的方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0),
把三点坐标A(2,2),B(5,3),C(3,-1)代入得方程组
所以这个圆的方程为x2+y2-8x-2y+12=0.
通过练习巩固本节所学知识,通过学生解决问题,发展学生的数学运算、逻辑推理、直观想象、数学建模的核心素养。
您可能喜欢的文档
查看更多直线的一般式方程教学设计人教A版高中数学选择性必修第一册
- 页数:9页
- |大小:266.73KB
圆的标准方程教学设计人教A版高中数学选择性必修第一册
- 页数:10页
- |大小:324.53KB
直线的点斜式方程教学设计人教A版高中数学选择性必修第一册
- 页数:8页
- |大小:746.24KB
直线的两点式方程教学设计人教A版高中数学选择性必修第一册
- 页数:8页
- |大小:199.20KB
圆与圆的位置关系教学设计人教A版高中数学选择性必修第一册
- 页数:8页
- |大小:488.57KB
直线与圆的位置关系教学设计人教A版高中数学选择性必修第一册
- 页数:9页
- |大小:966.99KB
两点间的距离公式教学设计人教A版高中数学选择性必修第一册
- 页数:8页
- |大小:655.49KB
热门课件教案
XX区民政局党支部开展主题教育工作情况总结报告
- 页数:3页
- |大小:24.47KB
- 课件教案
2023年区实施乡村振兴战略工作总结
- 页数:6页
- |大小:27.90KB
- 课件教案
交通运输局在巡回指导组主题教育阶段性工作总结推进会上的汇报发言
- 页数:4页
- |大小:33.41KB
- 课件教案
XX区文旅体局2023年工作总结 及2024年工作安排
- 页数:8页
- |大小:32.41KB
- 课件教案
公司2024第一季度意识形态工作联席会议总结
- 页数:6页
- |大小:141.67KB
- 课件教案
关于2024年上半年工作总结和下半年工作计划
- 页数:5页
- |大小:29.72KB
- 课件教案
今日更新
5月份主题教育工作情况总结汇报
- 页数:3页
- |大小:136.87KB
××县招商局2024年上半年工作总结
- 页数:12页
- |大小:142.54KB
×××公安局机关党委上半年党建工作总结
- 页数:7页
- |大小:186.25KB
《2019—2024年全国党政领导班子建设规划纲要》实施情况的工作总结3800字
- 页数:6页
- |大小:29.16KB
“转观念、勇担当、新征程、创一流”主题教育活动阶段性工作总结
- 页数:3页
- |大小:22.76KB
“四零”承诺服务创建工作总结
- 页数:5页
- |大小:39.83KB