根据《中华人民共和国广告法》,《中华人民共和国合同法》及国家有关法律、法规的规定,甲、乙双方在平等、自愿、等价有偿、诚实守信的基础上,本着双方互惠互利、精诚合作的原则,经友好协商,就乙方委托甲方制作 新天地二期及苑南楼改造概念方案文本修改样PPT文本 事宜达成以下协议:一、 项目概述1、 项目名称: 2、 制作周期:始 年 月 日;止 年 月 日, 工作日3、 项目总金额:RMB(大写) 元 , ¥: 元二、 乙方负责提供修改文本(基础图由甲方提供)约57张图。二、 甲方权利与义务1、 甲方需向乙方提供详尽的背景资料,并为乙方测量现场提供方便。2、 甲方有权监督乙方在设计制作中诸如设计方案、图纸是否设计合理等工作。3、 甲方提供专人协调与乙方的工作并对整个项目有建议权和终审权。三、 乙方权利与义务1、 乙方应完全按照甲方提供的资料来完成该项目,在甲方同意情况下乙方可跟据自己的经验少作调整。 2、 乙方负责向甲方提供设计方案及最终效果图。
经双方协商,特签署本协议。一、 合同内容:印刷品名称 规格(mm) 数量 材质 印色 单价/款 总价 交货时间订稿付订金后二、其他事项:1、 总价:_________________________________________________________________ 2、 预付50%定金: 3、 交货日期:_________年_____ 月_____日前 4、 运输方式:送货 5、 结算方式: 电汇; 6、 结算时间:验货无误收到发票后3日内结清余款。三、印刷质量标准 1、乙方前期制作应按提供样稿之要求按时、按质完成,印刷品内容以签字样稿 为准;甲方应负责有关内容的及时校对确认以及收货验货。 2、彩色印刷品的色差范围正负应不超过样稿的10%,套印误差不得大于于0.2mm, 数量误差5%以内,裁切误差3mm,其他如需检验的项目按国家新闻出版行业标准有关平版一般印刷品的质量标准验收。
对数与指数是相通的,本节在已经学习指数的基础上通过实例总结归纳对数的概念,通过对数的性质和恒等式解决一些与对数有关的问题.课程目标1、理解对数的概念以及对数的基本性质;2、掌握对数式与指数式的相互转化;数学学科素养1.数学抽象:对数的概念;2.逻辑推理:推导对数性质;3.数学运算:用对数的基本性质与对数恒等式求值;4.数学建模:通过与指数式的比较,引出对数定义与性质.重点:对数式与指数式的互化以及对数性质;难点:推导对数性质.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入已知中国的人口数y和年头x满足关系 中,若知年头数则能算出相应的人口总数。反之,如果问“哪一年的人口数可达到18亿,20亿,30亿......”,该如何解决?要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
函数在高中数学中占有很重要的比重,因而作为函数的第一节内容,主要从三个实例出发,引出函数的概念.从而就函数概念的分析判断函数,求定义域和函数值,再结合三要素判断函数相等.课程目标1.理解函数的定义、函数的定义域、值域及对应法则。2.掌握判定函数和函数相等的方法。3.学会求函数的定义域与函数值。数学学科素养1.数学抽象:通过教材中四个实例总结函数定义;2.逻辑推理:相等函数的判断;3.数学运算:求函数定义域和求函数值;4.数据分析:运用分离常数法和换元法求值域;5.数学建模:通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,提高学生的抽象概括能力。重点:函数的概念,函数的三要素。难点:函数概念及符号y=f(x)的理解。
例7 用描述法表示抛物线y=x2+1上的点构成的集合.【答案】见解析 【解析】 抛物线y=x2+1上的点构成的集合可表示为:{(x,y)|y=x2+1}.变式1.[变条件,变设问]本题中点的集合若改为“{x|y=x2+1}”,则集合中的元素是什么?【答案】见解析 【解析】集合{x|y=x2+1}的代表元素是x,且x∈R,所以{x|y=x2+1}中的元素是全体实数.变式2.[变条件,变设问]本题中点的集合若改为“{y|y=x2+1}”,则集合中的元素是什么?【答案】见解析 【解析】集合{ y| y=x2+1}的代表元素是y,满足条件y=x2+1的y的取值范围是y≥1,所以{ y| y=x2+1}={ y| y≥1},所以集合中的元素是大于等于1的全体实数.解题技巧(认识集合含义的2个步骤)一看代表元素,是数集还是点集,二看元素满足什么条件即有什么公共特性。
版权方无偿/有偿后端分成授权真人短视频拍摄制作发行,项目运营方承担项目拍摄制作,双方需保持项目制作上良好合作沟通,双方根据自身资源优势合作项目宣传推广,版权方可安排IP作者与项目主创共同出席线下粉丝见面会及签售活动。(周边衍生品及售票形式见面会是否涉及分成)甲方:乙方: 鉴于乙方欲将甲方享有著作权的文学/漫展作品《XXXXX》(下称“作品”)改编并以真人短视频形式(下称“改编作品”)进行发布和传播,现甲乙双方经友好协商,就甲方授权该作品之部分著作权有关事宜,达成如下协议:一、作品的内容1.作品名称:以双方协商为准2.作品版权方: 二、授权的权利种类及范围1.甲方授权乙方在全球范围内独家享有授权的著作权包括真人短视频的改编权(即将上述作品授权乙方或乙方指定的人自行改编为真人短视频的权利);信息网络传播权;复制权;发行权;出租权;转授权;表演权及改名权等著作权权利。2.授权对象:乙方3.授权的期限:自协议签字之日起共计 2 年,自 年 月 日起至 年 月 日。4.乙方依法对改编作品享有包括但不限于许可他人复制、发行、出租、通过信息网络向公众传播并获得报酬的权利,对改编作品享有完整的著作权。5.乙方获得该作品的改编权后,为适应影视艺术形式的需要,在不违背作者原意的前提下,有权对上述授权作品进行适当增删;乙方保证在进行项目制作时,为原作者署名。乙方如需聘请甲方根据乙方的要求修改作品,具体事宜届时由甲乙双方另行协商。6.双方同意本协议期满之后,乙方享有作品的非专有使用权。7.真人改编短视频项目统筹运营由乙方所在地完成,即乙方所在地为合同履行地。
(一)期限本协议为期 年。有效期自 年 月 日起至 年 月 日止。(二)乙方工作目标内容乙方的具体工作目标内容如下:1) 年年度销售额目标 万元,利润目标 %。2) 年年度销售额目标 万元,利润目标 %。3) 年年度销售额目标 万元,利润目标 %。4) 年年度销售额目标 万元,利润目标 %。5) 年年度销售额目标 万元,利润目标 %。(三)乙方期权股份收益年度 年 年 年 年 年点数 0 1 1 2 1共计点数 5个点 说明:1)乙方如实现各年度目标,则可拿到年度的期权股份,待协议期满后甲方根据约定将乙方共计五个点的期权股份转为正式注册股;2)每年度期权股份分红发放时间为甲方企业年度财务结算后一个月内发放;3)本协议期满后若甲方企业年销售额达成约定目标,则乙方享受甲方企业的期权股份立即转为甲方企业的注册股份,甲方按双方约定办理乙方的期权股份转注册股份相关手续,期限为服务期截止日后的一个月内。
根据《中华人民共和国合同法》及有关法律法规的规定,甲乙双方遵循平等自愿、协商一致和诚实信须知的原则,现就 印刷事宜达成以下协议:第一条 委托事项根据甲方要求,乙方为甲方提供 印刷及相关服务。第二条 具体委托内容(产品数量、质量要求、服务等)张/数: 张, 样单 张。尺寸:设计制作: 未尽事宜双方协商解决。版式: 未尽事宜双方协商解决。纸张:书刊纸70g乙方根据具体印刷内容进行委托,印刷品必须符合国家及有关部门的技术标准和规定,满足用户要求,内容无误,材质无误、纸张平滑,墨色均匀,页码正确,尺寸划一,装订整齐,包装结实,标签准确。未经甲方同意,乙方应用自己的技术和设备独立完成印刷工作,不得转让或再委托第三方印刷。第三条 委托期限委托期限2016年 月 日起至2016年 月 日止。第四条 委托费用1、委托费用的计算方式:单价: 本,按实际发生量结算。2、委托费用的支付方式:乙方开具发票后10个工作日内甲方以转账或其他方式支付。
一、甲方出资建设养殖场地、购买种苗资金、所有成本费用,以及负责赣州市章贡区及周边的宣传销售。乙方负责养殖场全部事宜,包括种苗的购进和培育、养殖等全部事项。 二、养殖场设立地点为 ,养殖场对外以甲方或者甲方同意的名义进行经营管理。 三、甲、乙双方合伙经营期限:从 年 月 日至 年 月 日止。期间如有意退出合伙经营,需协商双方(合同签订人)达成共识后方可退出了,到期后可另行协商,经协商一致可延长经营期限。 四、双方约定由甲方负责赣州市章贡区及周边的销售合伙经营养殖的成品禽类,乙方负责大余县周边的销售合伙经营养殖的成品禽类。五、乙方必须保证种苗到成品销售之间存活率为95%,并且全部能完全通过绿色食品出口检验。 六、具体养殖操作由乙方执行,养殖种苗购入及成活率养殖等养殖过程中存在的问题均由乙方单独承担,甲方概不负责。 七、养殖场每三个月结算一次,纯利润部分(除去一切成本费用),双方按签订人数,每人30%比例分成,剩余10%的利润,通过双方协商分配。
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.1节《对数函数的概念》。对数函数是高中数学在指数函数之后的重要初等函数之一。对数函数与指数函数联系密切,无论是研究的思想方法方法还是图像及性质,都有其共通之处。相较于指数函数,对数函数的图象亦有其独特的美感。学习中让学生体会在类比推理,感受图像的变化,认识变化的规律,这是提高学生直观想象能力的一个重要的过程。为之后学习数学提供了更多角度的分析方法。培养学生逻辑推理、数学直观、数学抽象、和数学建模的核心素养。1、理解对数函数的定义,会求对数函数的定义域;2、了解对数函数与指数函数之间的联系,培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;渗透类比等基本数学思想方法。3、在学习对数函数过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学应用的意识,感受数学、理解数学、探索数学,提高学习数学的兴趣。
对数函数与指数函数是相通的,本节在已经学习指数函数的基础上通过实例总结归纳对数函数的概念,通过函数的形式与特征解决一些与对数函数有关的问题.课程目标1、通过实际问题了解对数函数的实际背景;2、掌握对数函数的概念,并会判断一些函数是否是对数函数. 数学学科素养1.数学抽象:对数函数的概念;2.逻辑推理:用待定系数法求函数解析式及解析值;3.数学运算:利用对数函数的概念求参数;4.数学建模:通过由抽象到具体,由具体到一般的思想总结对数函数概念.重点:理解对数函数的概念和意义;难点:理解对数函数的概念.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入我们已经研究了死亡生物体内碳14的含量y随死亡时间x的变化而衰减的规律.反过来,已知死亡生物体内碳14的含量,如何得知死亡了多长时间呢?进一步地,死亡时间t是碳14的含量y的函数吗?
指数函数与幂函数是相通的,本节在已经学习幂函数的基础上通过实例总结归纳指数函数的概念,通过函数的三个特征解决一些与函数概念有关的问题.课程目标1、通过实际问题了解指数函数的实际背景;2、理解指数函数的概念和意义.数学学科素养1.数学抽象:指数函数的概念;2.逻辑推理:用待定系数法求函数解析式及解析值;3.数学运算:利用指数函数的概念求参数;4.数学建模:通过由抽象到具体,由具体到一般的思想总结指数函数概念.重点:理解指数函数的概念和意义;难点:理解指数函数的概念.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入在本章的开头,问题(1)中时间 与GDP值中的 ,请问这两个函数有什么共同特征.要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
新知探究我们知道,等差数列的特征是“从第2项起,每一项与它的前一项的差都等于同一个常数” 。类比等差数列的研究思路和方法,从运算的角度出发,你觉得还有怎样的数列是值得研究的?1.两河流域发掘的古巴比伦时期的泥版上记录了下面的数列:9,9^2,9^3,…,9^10; ①100,100^2,100^3,…,100^10; ②5,5^2,5^3,…,5^10. ③2.《庄子·天下》中提到:“一尺之锤,日取其半,万世不竭.”如果把“一尺之锤”的长度看成单位“1”,那么从第1天开始,每天得到的“锤”的长度依次是1/2,1/4,1/8,1/16,1/32,… ④3.在营养和生存空间没有限制的情况下,某种细菌每20 min 就通过分裂繁殖一代,那么一个这种细菌从第1次分裂开始,各次分裂产生的后代个数依次是2,4,8,16,32,64,… ⑤4.某人存入银行a元,存期为5年,年利率为 r ,那么按照复利,他5年内每年末得到的本利和分别是a(1+r),a〖(1+r)〗^2,a〖(1+r)〗^3,a〖(1+r)〗^4,a〖(1+r)〗^5 ⑥
新知探究前面我们研究了两类变化率问题:一类是物理学中的问题,涉及平均速度和瞬时速度;另一类是几何学中的问题,涉及割线斜率和切线斜率。这两类问题来自不同的学科领域,但在解决问题时,都采用了由“平均变化率”逼近“瞬时变化率”的思想方法;问题的答案也是一样的表示形式。下面我们用上述思想方法研究更一般的问题。探究1: 对于函数y=f(x) ,设自变量x从x_0变化到x_0+ ?x ,相应地,函数值y就从f(x_0)变化到f(〖x+x〗_0) 。这时, x的变化量为?x,y的变化量为?y=f(x_0+?x)-f(x_0)我们把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函数从x_0到x_0+?x的平均变化率。1.导数的概念如果当Δx→0时,平均变化率ΔyΔx无限趋近于一个确定的值,即ΔyΔx有极限,则称y=f (x)在x=x0处____,并把这个________叫做y=f (x)在x=x0处的导数(也称为__________),记作f ′(x0)或________,即
二、典例解析例4. 用 10 000元购买某个理财产品一年.(1)若以月利率0.400%的复利计息,12个月能获得多少利息(精确到1元)?(2)若以季度复利计息,存4个季度,则当每季度利率为多少时,按季结算的利息不少于按月结算的利息(精确到10^(-5))?分析:复利是指把前一期的利息与本金之和算作本金,再计算下一期的利息.所以若原始本金为a元,每期的利率为r ,则从第一期开始,各期的本利和a , a(1+r),a(1+r)^2…构成等比数列.解:(1)设这笔钱存 n 个月以后的本利和组成一个数列{a_n },则{a_n }是等比数列,首项a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12个月后的利息为10 490.7-10^4≈491(元).解:(2)设季度利率为 r ,这笔钱存 n 个季度以后的本利和组成一个数列{b_n },则{b_n }也是一个等比数列,首项 b_1=10^4 (1+r),公比为1+r,于是 b_4=10^4 (1+r)^4.
我们知道数列是一种特殊的函数,在函数的研究中,我们在理解了函数的一般概念,了解了函数变化规律的研究内容(如单调性,奇偶性等)后,通过研究基本初等函数不仅加深了对函数的理解,而且掌握了幂函数,指数函数,对数函数,三角函数等非常有用的函数模型。类似地,在了解了数列的一般概念后,我们要研究一些具有特殊变化规律的数列,建立它们的通项公式和前n项和公式,并应用它们解决实际问题和数学问题,从中感受数学模型的现实意义与应用,下面,我们从一类取值规律比较简单的数列入手。新知探究1.北京天坛圜丘坛,的地面有十板布置,最中间是圆形的天心石,围绕天心石的是9圈扇环形的石板,从内到外各圈的示板数依次为9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型号的女装上对应的尺码分别是38,40,42,44,46,48 ②3.测量某地垂直地面方向上海拔500米以下的大气温度,得到从距离地面20米起每升高100米处的大气温度(单位℃)依次为25,24,23,22,21 ③
二、典例解析例3.某公司购置了一台价值为220万元的设备,随着设备在使用过程中老化,其价值会逐年减少.经验表明,每经过一年其价值会减少d(d为正常数)万元.已知这台设备的使用年限为10年,超过10年 ,它的价值将低于购进价值的5%,设备将报废.请确定d的范围.分析:该设备使用n年后的价值构成数列{an},由题意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}为公差为-d的等差数列.10年之内(含10年),该设备的价值不小于(220×5%=)11万元;10年后,该设备的价值需小于11万元.利用{an}的通项公式列不等式求解.解:设使用n年后,这台设备的价值为an万元,则可得数列{an}.由已知条件,得an=an-1-d(n≥2).所以数列{an}是一个公差为-d的等差数列.因为a1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由题意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范围为19<d≤20.9
在线
客服