说目标:幼儿学习音乐的目的是培养他们的审美感受,体验音乐带来的快乐。正如《纲要》中所说应支持幼儿富有个性和创造性的表达。因此我顶的能力目标:是根据人物特点,将音乐形象与故事中的人物形象相匹配。技能目标:是在音乐中大胆试用动作、表情等表现人物形象,体验表演的快乐。情感目标:是在活动中体验表演的快乐,通过表演,懂得不要轻信陌生人的道理。说重点:分析人物特点是本次活动的重点。说难点:听辨音乐,创编与人物相匹配的动作,是本次活动的难点。说准备:为了吸引孩子们的注意力,并对参与活动发生浓厚的兴趣,我在活动前进行了多方面的准备。1、森林的情景创设。2、课件(小红帽的故事)3、代表四个人物的音乐:《森林狂想曲》《天使小夜曲》《波斯市场》《拉德斯基进行曲》4、表演道具(红帽子、头巾、头饰、猎枪等)
1、通过活动,营造“知雷锋、爱雷锋、做雷锋”浓烈氛围,从而学习雷锋无私、友爱、助人、敬业、奋进、钻研的美好品质。进而促进文明校园创建,让雷锋精神在实践中汇聚起崇德向善的正能量。
一、活动背景:雷锋是时代的楷模,雷锋精神是永恒的。为进一步弘扬雷锋精神,传承传统美德,营造讲文明树新风的氛围;为进一步教育引领学生热爱集体、关心他人、团结友爱、乐于奉献,让胸前的红领巾更加鲜艳,争做新时代好少年;为进一步提高学生的服务意识和无私奉献精神,弘扬乐于助人的崇高品德,有效促进学校学生综合素质的提高,引导每一位学生从身边小事做起,让“雷锋”精神无处不在,永驻心中。特此,我们开展本次主题班会。二、班会目标:1、通过活动,营造“知雷锋、爱雷锋、做雷锋”浓烈氛围,从而学习雷锋无私、友爱、助人、敬业、奋进、钻研的美好品质。进而促进文明校园创建,让雷锋精神在实践中汇聚起崇德向善的正能量。2、通过活动,引导学生学习雷锋无私奉献的精神,以实际行动学习雷锋精神,践行雷锋精神,把雷锋精神代代传承下去。3、通过活动,引导学生在学习和生活中用实际行动去发扬雷锋艰苦朴素的优良作风和乐于助人的奉献精神,真正从自身做起,从点滴做起,从今天做起。
佛山石湾陶瓷发展历史悠久,为了让幼儿感受这张靓丽的历史“名片”的魅力,了解石湾陶瓷栩栩如生的形象和一道道制作工序,在幼儿自己动手制作的过程中掌握简单的制作方法,体验成功感并领略石湾陶瓷的艺术美。
一、教学重难点有效引导学生反思本人和父母的情感,回想父母对本人的付出,表达对父母的爱,养成感恩父母、好好学习的氛围。二、教学流程 (1)导入:1.黑板板书:父母爱 爱父母2.导语:同学们,今天是新学期开学的第一天。在父母的关心下,我们一天天地茁壮生长,今天终于成长为一名四年级小学生了。今天的课,就以“父母爱爱父母”为主题,开展我们的课堂。
随着互联网自媒体的兴盛,不少人为了引起关注,吸引“粉丝”使出浑身解数。有人攀爬城市高楼,做出各种惊险动作,以赢得点击量;有“14岁荣升宝妈”的少女,靠展示自己的肚皮,获得打赏;9岁女孩在抖音发哭诉视频:“今天妈妈火化了,我再也见不到她了,求求你们,就给我一万个赞可以吗?”;有农村青年直播生吃青蛙、老鼠以求转发;有父亲虚构家庭处境,靠“卖惨”为“重病女儿”筹款……一个比一个奇异,一个比一个惊悚。
1.知道森林防火的重要性,要爱护森林。 2.学习掌握森林防火知识。 3.使学生掌握防火安全知识,增强学生的防火安全防范意识;教给学生一些自护自救的方法,学会冷静地处理各种火灾紧急情况;学会搜集相关资料,培养队员关心社会的积极性;促使儿童青少年的健康成长。
教师姓名 课程名称数学班 级 授课日期 授课顺序 章节名称§2.2 区间教 学 目 标知识目标:1、理解区间的概念 2、掌握区间的表示方法 技能目标:1、能进行区间与不等式的互相转换 2、能在数轴上正确画出相应的区间 情感目标:体会不等式在日常生活中的应用,感受数学的有用性教学 重点 和 难点 重点: 不等式的概念和基本性质 难点: 1、会比较两个整式的大小 2、能根据应用题的表述,列出相应的表达式教 学 资 源《数学》(第一册) 多媒体课件评 估 反 馈课堂提问 课堂练习作 业习题2.1
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 3.4 二项分布. *创设情境 兴趣导入 我们来看一个问题:从100件产品中有3件不合格品,每次抽取一件有放回地抽取三次,抽到不合格品的次数用表示,求离散型随机变量的概率分布. 由于是有放回的抽取,所以这种抽取是是独立的重复试验.随机变量的所有取值为:0,1,2,3.显然,对于一次抽取,抽到不合格品的概率为0.03,抽到合格品的概率为1-0.03.于是的概率(仅求到组合数形式)分别为: , , , . 所以,随机变量的概率分布为 0123P 介绍 播放 课件 质疑 了解 观看 课件 思考 引导 启发学生得出结果 0 10*动脑思考 探索新知 一般地,如果在一次试验中某事件A发生的概率是P,随机变量为n次独立试验中事件A发生的次数,那么随机变量的概率分布为: 01…k…nP…… 其中. 我们将这种形式的随机变量的概率分布叫做二项分布.称随机变量服从参数为n和P的二项分布,记为~B(n,P). 二项分布中的各个概率值,依次是二项式的展开式中的各项.第k+1项为. 二项分布是以伯努利概型为背景的重要分布,有着广泛的应用. 在实际问题中,如果n次试验相互独立,且各次实验是重复试验,事件A在每次实验中发生的概率都是p(0<p<1),则事件A发生的次数是一个离散型随机变量,服从参数为n和P的二项分布. 总结 归纳 分析 关键 词语 思考 理解 记忆 引导学生发现解决问题方法 20
在课改进行得如火如荼的今天,新课程如一股春风吹进了我们的校园,走进了每一位师生的生活。我校从去年秋季开始选用了人教版的《义务教育课程标准实验教科书》,一年多来,我们不断更新教学理念,刻苦学习、大胆创新,探索了一些适合本地教学实际的有益途径,本节课是义务教育课程标准实验教科书一年级上册的内容,在学生已经学习了8和9 的加减法后进行教学的。学好本节课将为今后学习文字应用题打下坚实的基础。在教学过程中我将教材做了一些小小的改动,根据优化课堂教学的需要对教材进行了再加工,旨在因地制宜,使学生进一步掌握加减法的意义和10以内加减法的计算方法。提高学生运用所学知识解决实际问题的能力。让学生在学习中受到热爱自然、保护环境的教育,同时在教学中培养他们的合作意识和创新精神。
授课 日期 班级16高造价 课题: §6.3等比数列 教学目的要求: 1.理解等比数列的概念,能根据定义判断或证明一个数列是等比数列;2.探索并掌握等比数列的通项公式; 3.掌握等比数列前 n 项和公式及推导过程,能用公式求相关参数; 教学重点、难点:运用等比数列的通项公式求相关参数 授课方法: 任务驱动法 小组合作学习法 教学参考及教具(含多媒体教学设备): 《单招教学大纲》 授课执行情况及分析: 板书设计或授课提纲 §6.3等比数列 1.等比数列的概念 (学生板书区) 2. 等比数列的通项公式 3.等比数列的求和公式
教师姓名 课程名称数学班 级 授课日期 授课顺序 章节名称§2.1 不等式的基本性质教 学 目 标知识目标:1、理解不等式的概念 2、掌握不等式的基本性质 技能目标:1、会比较两个数的大小 2、会用做差法比较两个整式的大小 情感目标:体会不等式在日常生活中的应用,感受数学的有用性教学 重点 和 难点 重点: 不等式的概念和基本性质 难点: 1、会比较两个整式的大小 2、能根据应用题的表述,列出相应的表达式教 学 资 源《数学》(第一册) 多媒体课件评 估 反 馈课堂提问 课堂练习作 业习题2.1课后记
教师姓名 课程名称数学班 级 授课日期 授课顺序 章节名称§2.3 一元二次不等式教 学 目 标知识目标:1、理解一元二次不等式和一元二次方程以及二次函数之间的关系 2、理解一元二次不等式的解集的含义 3、一元二次不等式的解集与二次函数图像的对应 技能目标:1、会解一元二次方程 2、会画二次函数的图像 3、能结合图像写出一元二次不等式的解集 情感目标:体会知识之间的相互关联性,体会数形结合思想的重要性教学 重点 和 难点重点: 1、一元二次不等式的解集的含义 2、一元二次不等式与二次函数的关系 难点: 1、将一元二次不等式和一元二次方程以及二次函数联系起来 2、在函数图像上正确的找到解集对应的部分教 学 资 源《数学》(第一册) 多媒体课件评 估 反 馈课堂提问 课堂练习作 业习题2.3课后记本节课内容是比较重要的,是一元二次方程、一元二次函数、一元二次不等式的结合,相关知识点融会贯通,数形结合的思想方法在这有很好的运用。三种情况只要讲清楚一种,另外两种可由学生自行推出结论。
教师姓名 课程名称数学班 级 授课日期 授课顺序 章节名称§2.4 含绝对值的不等式教 学 目 标知识目标:1、理解绝对值的几何意义 2、掌握简单的含绝对值不等式的解法 3、掌握含绝对值不等式的等价形式 技能目标:1、会解形如|ax+b|>c或|ax+b|<c的绝对值不等式 情感目标:通过学习,体会数形结合、整体代换及等价转换的数学思想方法教学 重点 和 难点重点: 1、绝对值的几何意义 2、基本绝对值不等式|x|>a或|x|<a的解 难点: 1、去绝对值符号后不等式与原不等式保持等价性教 学 资 源《数学》(第一册) 多媒体课件评 估 反 馈课堂提问 课堂练习作 业习题2.4课后记不等式的基本性质是初中就学习过的内容,分式不等式的解法是哦本节课的一个重点和难点,尤其是不等号另一边不为0的情况,需要移项,这一点在强调前学生考虑不到,因此解题错误多。区间是个新内容,学生往往将连续的正数写作一个区间,这是常见的错误,要进行提醒。另外,在均值不等式这里稍微补充了一些内容,引起学生的兴趣。
【教学目标】1. 理解数列的通项公式的意义,能根据通项公式写出数列的任意一项,以及根据其前几项写出它的一个通项公式.2. 了解数列的递推公式,会根据数列的递推公式写出前几项.3.培养学生积极参与、大胆探索的精神,培养学生的观察、分析、归纳的能力.教学重点 数列的通项公式及其应用.教学难点 根据数列的前几项写出满足条件的数列的一个通项公式.教学方法 本节课主要采用例题解决法.通过列举实例,进一步研究数列的项与序号之间的关系.通过三类题目,使学生深刻理解数列通项公式的意义,为以后学习等差数列与等比数列打下基础.【教学过程】 环节教学内容师生互动设计意图导 入⒈数列的定义 按一定次序排列的一列数叫做数列. 注意:(1)数列中的数是按一定次序排列的; (2)同一个数在数列中可以重复出现. 2. 数列的一般形式 数列a1,a2,a3,…,an,…,可记作{ an }. 3. 数列的通项公式: 如果数列{ an }的第n项an与n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式. 教师引导学生复习. 为学生进一步理解通项公式,应用通项公式解决实际问题做好准备.
教 学 过 程教师 行为学生 行为教学 意图 *揭示课题 8.3 两条直线的位置关系(二) *创设情境 兴趣导入 【问题】 平面内两条既不重合又不平行的直线肯定相交.如何求交点的坐标呢? 图8-12 介绍 质疑 引导 分析 了解 思考 启发 学生思考 *动脑思考 探索新知 如图8-12所示,两条相交直线的交点,既在上,又在上.所以的坐标是两条直线的方程的公共解.因此解两条直线的方程所组成的方程组,就可以得到两条直线交点的坐标. 观察图8-13,直线、相交于点P,如果不研究终边相同的角,共形成四个正角,分别为、、、,其中与,与为对顶角,而且. 图8-13 我们把两条直线相交所成的最小正角叫做这两条直线的夹角,记作. 规定,当两条直线平行或重合时,两条直线的夹角为零角,因此,两条直线夹角的取值范围为. 显然,在图8-13中,(或)是直线、的夹角,即. 当直线与直线的夹角为直角时称直线与直线垂直,记做.观察图8-14,显然,平行于轴的直线与平行于轴的直线垂直,即斜率为零的直线与斜率不存在的直线垂直. 图8-14 讲解 说明 讲解 说明 引领 分析 仔细 分析 讲解 关键 词语 思考 思考 理解 思考 理解 记忆 带领 学生 分析 带领 学生 分析 引导 式启 发学 生得 出结 果
教 学 过 程教师 行为学生 行为教学 意图 *揭示课题 1.3正弦定理与余弦定理. *创设情境 兴趣导入 在实际问题中,经常需要计算高度、长度、距离和角的大小,这类问题中有许多与三角形有关,可以归结为解三角形问题. 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点*巩固知识 典型例题 例6 一艘船以每小时36海里的速度向正北方向航行(如图1-9).在A处观察到灯塔C在船的北偏东方向,小时后船行驶到B处,此时灯塔C在船的北偏东方向,求B处和灯塔C的距离(精确到0.1海里). 图1-9 A 解因为∠NBC=,A=,所以.由题意知 (海里). 由正弦定理得 (海里). 答:B处离灯塔约为海里. 例7 修筑道路需挖掘隧道,在山的两侧是隧道口A和(图1-10),在平地上选择适合测量的点C,如果,m,m,试计算隧道AB的长度(精确到m). 图1-10 解 在ABC中,由余弦定理知 =. 所以 m. 答:隧道AB的长度约为409m. 例8 三个力作用于一点O(如图1-11)并且处于平衡状态,已知的大小分别为100N,120N,的夹角是60°,求F的大小(精确到1N)和方向. 图1-11 解 由向量加法的平行四边形法则知,向量表示F1,F2的合力F合,由力的平衡原理知,F应在的反向延长线上,且大小与F合相等. 在△OAC中,∠OAC=180°60°=120°,OA=100, AC=OB=120,由余弦定理得 OC= = ≈191(N). 在△AOC中,由正弦定理,得 sin∠AOC=≈0.5441, 所以∠AOC≈33°,F与F1间的夹角是180°–33°=147°. 答:F约为191N,F与F合的方向相反,且与F1的夹角约为147°. 引领 讲解 说明 引领 观察 思考 主动 求解 观察 通过 例题 进一 步领 会 注意 观察 学生 是否 理解 知识 点
1、从一些物品中找出幼儿不能玩、易引起火灾的东西,激发幼儿的活动兴趣。 2、观看课件,引导幼儿说出火灾的危害。火不仅能烧毁房子,烧伤人,还会烧毁森林,污染空气。 3、通过课件,引导幼儿说出预防火灾的方法,认识"防火"标志。 ①预防火灾,小朋友们不能随便玩火。 ②蚊香不能靠近容易着火的物品。 ③不能随便燃放烟花爆竹。 ④小朋友不能玩未熄灭的烟头,见了没熄灭的烟头应及时踩灭。
(一)图片展示,引入新课。 展示各种火灾现场图片,师:看了这些图片,你想说什么?你在哪里还看到过这样惨不人睹的场面?有什么感受?(指名后小组交流。) 讨论:让学生在教师的引导下提出值得探讨的问题,采用指名、小组合作或者同桌交流等方式反馈。如: (1)为什么会发生森林火灾? (2)图片中有几种动物?他们有哪些不同的神情? (3)那个男孩是怎么样协助动物们逃生的?
在线
客服